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Abstract

This paper presents a framework to study the technological resiliency of financial sys-
tem architecture. Financial market infrastructures, or platforms, compete with services
that play critical functions along various stages in the lifecycle of a trade, and make in-
vestments in technological resiliency to guard against attackers seeking to exploit system
weaknesses. Platforms’ financial network effects attenuate competition between platforms
on security. Exposure to vulnerabilities is magnified in the presence of strategic adver-
saries. Private provision of technological resiliency is generally sub-optimal, with over-
and under-investment in security depending on market structure. Vulnerabilities evolve
over the maturity of a financial system, but there generically exists a tipping point at which
technological resiliency diverges from optimal and creates technological drag on the finan-
cial system. We find supportive evidence in tri-party repo settlement: the exit of duopolist
resulted in a significant drop in IT-related investment by the sole provider, even as peer
firms ramp up investment.
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1 Introduction

The architecture of the financial system is significantly concentrated. The pace of financial
markets, along with financial regulation, have increased the importance of economizing on liq-
uidity. Financial architecture has co-evolved with financial activity to develop arrangements to
economize on liquidity and digest the higher velocity and volume of trade. Concurrently, the
underlying infrastructure that facilitates trade, clearing, and settlement has undergone dra-
matic consolidation (Figure 1). At heart are financial market infrastructures (FMIs), including
exchanges, clearinghouses, and settlement providers, banks, and other non-bank financial in-
stitutions, which offer services that generate value through network effects, and thus tend
to be natural monopolies (Pirrong 2011). Appropriately, the systemic importance of these
key financial institutions have garnered significant attention, particularly with respect to the
concentration of financial risk (Duffie 2014).

Disruptions in the non-redundant operations of key financial institutions can lead directly
to dysfunction and broad failures across the entire financial system. This paper studies tech-
nological vulnerabilities in the financial system, an under-explored determinant of financial
stability, which arise from dependence and concentration of the underlying architecture. No-
tably, risks arising from cyberattacks have steadily risen to the forefront of financial stability
considerations. Cyberattacks on financial institutions are more disruptive and monetarily
more profitable, making them prime targets for cyber adversaries (Aldasoro, Gambacorta,
Giudici and Leach 2020). Significant increases in the cyber criminal enterprises, nation-state
actors, and geopolitical tensions have contributed to growing concern and actual losses in
the financial sector. Despite the broad acknowledgment of policy makers and industry about
the systemic risks posed by cyber risk, there is little work on the mechanisms and to assess
whether and when the technological resiliency of the financial system is adequate.

We propose a theory of financial system architecture, in which the market structure and its
technological vulnerabilities of the underlying infrastructure are endogenously determined by
competition between these financial intermediaries, or platforms. Platforms facilitate financial
transactions between their network of users and safeguard their system from technological
risks, including those arising from cyber adversaries seeking to infiltrate its systems and data.
Platforms offer enhanced trading and liquidity-saving mechanisms that scale with the size of
their networks.

We draw three main insights. First, we establish an inverse relation between security
and key financial market characteristics, and show that the private provision of technological
resiliency is generally sub-optimal, with the possibility of both over- and under-investment.
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Figure 1: Consolidation of financial system architecture.

Second, in a dynamic environment where market structure and vulnerability of a financial
system evolves over time, we show that the financial system gravitates towards consolidation,
and identify a ”tipping point” at which point long-term divergence occurs between the private
and socially optimal level of technological resiliency. Third, these vulnerabilities translate into
a technological drag on the financial system, characterized by market-wide losses resulting from
susceptibility to cyber attacks, and materially impacts aggregate trading patterns and capacity.
We find empirical evidence in support of this link between market structure and technological
investment in the tri-party repo settlement.

In our model, traders seek each other to enter financial transactions that generate gains
from trade when successfully settled. Settlement requires traders to pledge collateral, making
liquidity a scarce resource. Traders individually choose a financial platform to join. On the
financial side, platforms increase financial efficiency in two ways: first, they improve matching
efficiency by increasing the set of latent trading opportunities that are realized; second, they
offer liquidity-saving through multilateral netting between traders on their platforms. Both
enhancements create natural economies of scale.

On the technological side, platforms make investments to strengthen technological re-
siliency and reduce the possibility of disruptions to their operations. In particular, platforms
must defend against cyber adversaries, who attempt to compromise their systems and data,
i.e. orchestrate a cyberattack. Attackers choose the intensity with which they attempt to in-
filtrate each platform. Our model is sufficiently flexible to capture a comprehensive set of
cyber attack types that compromise the availability, integrity, and confidentiality of platforms’
systems or data (Curti, Gerlach, Kazinnik, Lee and Mihov 2023). Our framework allows us
to map attacks to disruptions in trade and settlement, and even lock up liquidity. Platforms
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choose security investments that enhance technological resiliency, particularly against risks
posed by cyber adversaries.

We first show that attack intensity is proportional to a platform’s technological vulnerabil-
ity and the size of the platform. Consequently, weaknesses are amplified through the strategic
behavior of cyber adversaries. Thus, in the model, cyber risk is distinguished by the strategic
interaction between platforms and attackers. In contrast to other forms of operational risk,
cyber risk is affected by the intensity of the attack.

Traders choose platforms based on two dimensions: financial value and technological
value. The relative financial value of platforms consist of trade surplus arising from platform
membership, which depends on match efficiency, netting benefits, and network size. The
relative technological value of platforms is based on expected losses arising from technological
vulnerability, which depend on trade-related losses and collateral-related losses, which are
realized in the event of a successful attack.

Platforms compete to broaden their networks, and the resulting competition for traders
determines equilibrium investment for both platforms. In equilibrium, cyberattacks introduce
“cyber diseconomies,” i.e. larger platforms are exposed to greater adversarial attack intensity
due to being higher value targets. Still, in equilibrium, larger platforms garner larger shares by
making sufficient security investments to ensure that they broaden their share of the market.
We map key primitive features of the financial market directly to technological vulnerability.
In general, we find that technological vulnerability rises with the financial value of platforms
and relaxes as markets become more concentrated.

We find that a public-private wedge in technological resilience generically arises. The
socially-optimal level of investment explicitly takes into account the expected losses from
vulnerabilities, which incorporates both the size of the platform and losses conditional on a
successful attack. In contrast, private investments are driven by competition for users, which
hinges on the marginal trader’s choice. As a result, the public-private wedge can go both
ways – when competition is relatively even, over-investment occurs, as platforms shore up
technological resilience to extend their shares. When one platform is sufficiently dominant,
however, the public-private wedge is negative, resulting in excessively high probabilities of
attacks.

The interplay between market structure and technological resiliency motivates a dynamic
extension. We consider a dynamic environment, in which platform concentration and tech-
nological vulnerability co-evolve over time. Initially, competition for member-traders inten-
sifies, as traders become more pivotal. However, once sufficient concentration is established,
traders’ platform choice is predominantly determined by network benefits over concerns over
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technological vulnerability, and the dominant platform eases investments, resulting in under-
investment. This under-investment results in technological drag on efficiency, characterized by
excessive cyber disruptions that significantly affect normal functioning of financial systems.

Altogether, our analysis shows that as a financial system matures, its underlying architec-
ture can become concentrated and become technologically vulnerable. Over time, all traders
in the market are left with a dominant infrastructure with no other viable option. These cir-
cumstances could fundamentally influence both the nature and volume of trading itself. To
examine this, we extend the model to endogenize trading. Traders internalize technological
risks by trading defensively: they shift away from lucrative but liquidity-intensive trading
strategies, thereby lowering expected losses associated with liquidity and collateral lock-up
in the event of a cyberattack. Moreover, as financial system architecture becomes more con-
centrated and vulnerable, the aggregate trading capacity diminishes. Both changes in trading
activity serve to magnify technological drag.

A resounding implication is that in the absence of regulation, technological vulnerabilities
rise when markets become consolidated. Broad consolidation throughout the financial system
points to the possibility for under-provision of technological resiliency. We test this empirical
implication by analyzing technological expenditure of settlement banks in the tri-party repo
market. Specifically, we exploit the exit of a duopolist in tri-party repo settlement in 2019,
which resulted in a single bank solely responsible for the entire market. We find a significant
drop in IT expenditure over assets in the years following the exit. Importantly, IT expenditure
increases secularly for other large banks throughout the entire sample period, as documented
by Modi, Pierri, Timmer, Peria and Peria (2022).

Relative to the rapid consensus between private and public sectors regarding the grave
risks posed by a well-orchestrated cyber campaign against the financial system, progress on
policies and regulatory guardrails to safeguard the financial system from systemic cyber risk
is relatively slow. These issues are especially salient for FMIs, who are crucial, and often
times provide non-redundant services, to normal financial market functioning. Our analysis
highlights tradeoffs that arise between financially optimal design and technological resilience.
Greater concentration in financial market infrastructure can allow for more efficient financial
arrangements, including those involving collateral and liquidity. However, in the absence
of regulation, private provision of technological resilience can be lacking when platforms
become too concentrated. Furthermore, from a practical standpoint, our results suggest that
historical performance on technological resiliency may not be a sufficient indicator for current
technological resiliency, especially with industry consolidation.

Our paper relates to a growing literature that studies the impact of cyber risk on financial
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stability (Kashyap and Wetherilt (2019), Brando, Kotidis, Kovner, Lee and Schreft (2022)).
Studies have the potential for cyber attacks to spark runs at financial institutions (Duffie and
Younger 2019). Anand, Duley and Gai (2022) studies tradeoffs arising between ex-ante and
ex-post investments when banks defending against cyber attacks. Eisenbach, Kovner and Lee
(2022) shows that an attack on key financial institutions and FMUs can result in significant
liquidity dislocations and have systemic consequences. Eisenbach, Kovner and Lee (2024)
finds systemic cyber risk rises during stressed financial conditions, shedding further light on
the tail-risk nature of cyber risk. Kotidis and Schreft (2023) finds supportive evidence in an
actual cyber attack that hit a financial service provider and whose disruptions propagated
throughout the network. In a corporate context, Crosignani, Macchiavelli and Silva (2020)
studies and finds evidence of network propagation, indicating that potential cyberattacks
have aggregate implications. Our paper studies how technological vulnerabilities of financial
market infrastructure translate into systemic exposure to cyber attacks.

These concerns are ever more evident in the case of financial market infrastructures, whose
criticality has long been recognized and shown to be prime targets (Aldasoro, Gambacorta,
Giudici and Leach 2022). A focal theme has been considerations regarding risk concentration
and amplifications (Duffie 2014). Our paper also rationalizes the observed concentration of
the underlying financial system architecture, as described Awrey and Macey (2021), which
shows that technological investments are a key driver of consolidation. We bridge the gap by
exploring a less-explored dimension regarding technological vulnerabilities, and show how
market structure and technological resiliency go hand-in-hand.

Our paper contributes to the literature on information and system security (e.g. Anderson
(2001), Anderson and Moore (2006)). Fainmesser, Galeotti and Momot (2019) studies the
collection and protection of user data and shows that the security of user data depends on
the underlying business model of the firm. Brolley, Cimon and Riordan (2020) considers the
provision of security when security investments are unobservable and finds under-provision
to occur. Our paper dynamically links security investment to the underlying market structure
and studies the relation between cyber vulnerability and the lifecycle of the financial industry.

2 Baseline Model

We start by outlining the static environment. We consider a model of a financial system
in which traders enter financial transactions that generate gains from trade when successfully
settled. Settlement requires traders to pledge collateral, making liquidity a scarce resource.
Platforms are FMUs that offer trading, clearing, and settlement services. These services en-
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hance financial efficiency in two ways: first, they improve matching efficiency by increasing
the set of latent trading opportunities that are realized; second, they offer liquidity-saving, for
example, through multilateral netting. Importantly, both create natural economies of scale.
Traders select a platform to process transactions. A key complication is the presence of a
malicious actor, or attacker, who attempts to compromise the system and data of platforms,
e.g. orchestrate a cyber attack. Platforms choose security investments that enhance their
operational resiliency, including those against cyber attacks.

Agents. There are three types of agents: platforms p ∈ {1, 2}, an attacker (or adversary), and
a set of traders U, where the total mass of traders is µ ≡ |U|. For each platform p, there
is a mass of initial traders, denoted ηp, and η = η1 + η2. The remaining mass of traders,
denoted λ = µ− η, choose at most one platform to join. Let λp be the mass of traders that
join platform p, and let the total mass of traders be denoted µp.

Trading. A set of bilateral trading opportunities are stochastically realized, each of size 1.
For any given trade, the gross position of the trader is 1 or −1. A trade generates a surplus
of β for both parties. The set of opportunities can depend on whether both traders are on
the same platform, oron-platform, or not. We refer to trades that occur between two traders
on different platforms as off-platform. We use θ ∈ {p, 0} to represent on- and off-platform,
respectively. At the trading stage, the main benefit from on-platform trades arises from more
trading opportunities being generated between traders of the same platform.

Formally, we represent the set of trading opportunities as an endogenous Erdos-Renyi
graphon. Each trader has an independent trading type t ∼ U[0, 1]. For two traders of type
t and t′, the probability of getting matched and the velocity of trades conditional on get-
ting matched are encoded in the velocity function τ(t, t′) ∈ [0, 1]. Conditional on being
matched, the nature of the trade is reflected by the position function π(t, t′) ∈ {−1, 0, 1},
where π(t, t′) = 1 if a trader of type t holds a long position, π(t, t′) = −1 if she holds a short
position in matches with trader type t′, and π(t′, t) = −π(t, t′). When there is no trading
opportunity between the two types, π(t, t′) = π(t′, t) = 0. Together, the expected position of
a trader of type t with a trader of type t′ is τ(t, t′) · π(t, t′).

The velocity function τ(t, t′) shapes the intensity of trading activity. The velocity function
is given by τ(t, t′) = τeθ , where θ ∈ {0, p}, and comprised of two parts. The first component,
τ, represents a market-wide trading intensity common across all traders. In the baseline
model, we take the velocity to be constant τ, which is endogenized in Section 6. The second
component, eθ , represents pairwise trading intensity, which is determined by which platforms
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the traders are on. The probability of getting matched is ep if the trade is on-platform, and
e0 if the trade is off-platform, where ep ≥ e0. If, for example, platforms provide improved
matching technologies, then ep > e0. Consequently, the velocity function τ(t, t′) = eθτ is
endogenously determined through individual trader’s platform choices.

The position function determines the pattern of trading activity. We specify a simple ring
structure for the position function that allows for a rich possibility of aggregate outcomes.
Specifically, there are 2m groups of trader types: g1

1 = [0, 1
2m ), g1

2 = [ 1
2m , 2

2m ), ..g1
m = [m−1

2m , 1
2 ]

and g2
1 = [ 1

2 , m+1
2m ), g2

2 = [m+1
2m , m+2

2m ), ..g2
m = [ 2m−1

m , 1]. With some abuse of notation, let
π(g, g′) = π(t, t′) for all t ∈ g and t′ ∈ g′, where:

• For all i = 1, 2, ..., m and both k = 1, 2

π(gk
i , gk

i+1) = π(gk
i , gk

i+2) = .... = π(gk
i , gk

i+n1 mod m) = 1;

• For all i = 1, 2, ..., m,

π(g1
i , g2

i+1) = π(g1
i , g2

i+2) = .... = π(g1
i , g2

i+n2 mod m) = 1;

• and π(i, j) = 0 for all remaining pairs;

for some n1, n2 where n1 < m
2 and n2 ≤ m. Holding fixed the intensity of trade, a trader

in a group realizes trading opportunities with traders belonging to (2n1 + n2) other groups.
Among these matches, 2n1 matches belong to a cyclic pattern and multilaterally net to zero.
n2 matches are non-cyclic with no netting.

Collateral and Liquidity. In the model, liquidity is scarce, which makes relevant the settle-
ment stage of a trade. In particular, traders are required to post collateral in order to ensure
that settlement occurs. The amount of collateral required to settle trades depends on whether
trades are settled on- or off-platform. If a trade is settled bilaterally, 1 unit of collateral must
be posted from both parties per trade. If both traders belong to the same platform, then
traders have the option to execute and settle trades on the shared platform. Platforms pro-
vide liquidity-saving benefits to their members by multilateral netting all trades executed on
the platform. Let κ be the outside return of collateral utilization, where κ ∈ (0, β).

We provide an illustration of trade and settlement patterns in Figure 2. Every group gk
i has

n1 long and short positions from ”close” groups gk
j , and n2 positions with other groups gk′

j for
k′ 6= k. For an individual trader, the liquidity cost associated with settling these positions off-
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Figure 2: Example of trading pattern by groups of traders with m = 10, n1 = 2, and n2 = 3.
Blue positions are cyclic and provide netting benefits. Red positions are bipartite and acyclic,
and do not net.

platform is (2n1 + n2). The liquidity cost associated with settling these positions on-platform
is n2.

We refer to the ratio of on-platform liquidity cost to off-platform liquidity cost, n2
2n1+n2

,
as the liquidity-cost ratio. This captures the liquidity cost achieved from trading with those
on-platform relative to those off-platform, and relates to the extent to which network effects
arise from coordinating on a shared platform for settlement purposes. The possible values
of the liquidity-cost ratio span [0, 1], with smaller values indicating higher liquidity savings
from on-platform trading. For simplicity, we take n1, n2 to be such that the liquidity-saving
ratio is given by 1

m .1

Security and Attacks. Platforms compete for users by offering a network of users (which
enhances the value of being a member) bundled with its operational security (which lowers
the probability of a disruption). Platform p’s choose a security investment level sp ∈ [0, 1] at

1This holds for odd m and where n1 = m−1
2 and n2 = 1. These assumptions are purely expositional.
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cost cssp to maximize their payoff, where the unit payoff from a trader is normalized to 1:2

µp − cssp. (1)

Security investment increases the resiliency of the platform to malicious actors intent on dis-
rupting and extracting value from the platform. There is a representative attacker who chooses
the intensity at which it attempts to infiltrate and compromise the data and systems of the
platform. We denote this attack intensity on platform p as ap ∈ [0, 1], which comes at a cost
caap.

The probability of a successful attack on platform p is determined by both the level of
the platform’s security investment and the attacker’s attack intensity. The probability of a
successful attack is min{χp, 1} where

χp =
√

φ(sp)ap, where φ(sp) ≡ ge−Gsp (2)

for some parameters g, G > 0, where φ(sp) represents the technological vulnerability of the
platform. If the attack on platform p is successful, the attacker obtains a payoff that increases
in the size of the platform µp:

H(µp) ≡ 1− h
µp

We take h < η1, η2 so that H > 0. Altogether, the attacker chooses attack intensity ap to
maximize

χpH(µp)− caap. (3)

The losses accrued to a trader of platform p resulting from a successful attack depend
on the nature of the attack. We allow for three channels through which losses are accrued
to traders. First, traders may incur non-trade losses, associated with leakage of private in-
formation, including data revealing credentials, personally-identifiable information (PII), and
proprietary information regarding trading activity. Second, collateral held by the platform
could be inaccessible, in which case traders incur additional losses, not only from failing
to net trades but also from having collateral encumbered but not accessible. Third, trades
themselves could be disrupted and may be difficult to reconcile or replicate.

To account for an array of potential disruptions, we consider a general loss function. Con-
ditional on a successful attack, trader t at platform p incurs three potential losses:

2Our main results are robust to alternative payoff structure, such as those proportional to trading activity.
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• non-trade loss y;

• trade loss (1− r);

• and collateral loss (1− f );

where r and f are the fraction of trades and collateral recovered following an attack, respec-
tively. We allow for f and r to be negative, in which case the attack affects the firm’s trading
and collateral position beyond the scope of current outstanding trades. This could happen,
for example, if an outage locks up collateral for extended periods of time or if regulatory
reporting or trading operations are dependent on the platform’s services.

Trader Preferences. After observing each platform’s existing traders and security choice,
each trader chooses at most one platform to join. In addition to the expected common value
of membership on a platform, trader t has idiosyncratic preference for platform 1 over 2 xtτ,
where xt ∼ U[−σ, σ], and such that preferences scale with trade intensity τ.
Timeline The events of the model are as follows:

t = 1 Platforms make security investment.

t = 2 Traders choose the platform to join.

t = 3 Attacker chooses attack intensity.

t = 4 Trading opportunities are realized. Trades are executed and collateral is posted.

t = 5 Attack is lodged. Payoffs are realized.

3 Equilibrium Analysis

We characterize the equilibrium by solving backwards, starting with the attacker’s attack
intensity toward each platform.

Attacker’s Problem. At t = 3, the attacker chooses attack intensities, taking as given plat-
forms’ security choices and traders’ platform choices. Specifically, the attacker chooses ap to

maximize
√

φ(sp)apH(µp)− caap. The (interior) solution is given by:

√
ap =

1
2ca

√
φ(sp)H(µp),
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and implies a probability of a successful attack on platform p of

χp =
√

φ(sp)ap =
√

φ(sp)
1

2ca

√
φ(sp)H(µp) (4)

=
1

2ca
φ(sp)H(µp), (5)

where H(µp) = 1− h
µp

. We summarize the attacker’s strategy and the resulting probability of
an attack, as a function of sp, below:

Proposition 1. Suppose that F < 2ca. The attacker chooses

ap = φ(sp)

(
H(µp)

2ca

)2

(6)

The probability of a successful attack on p is

χp =
1

2ca
φ(sp)H(µp). (7)

The attacker’s optimal attack intensity is proportional to the technological vulnerability
φ(sp) of platform p. As such, any variation in security investment by a platform is matched
by the attacker, who adjusts its intensity accordingly. Second, the attacker gains more from
a successful attack on a larger platform and thus devotes more resources to attacking larger
platforms.

We will hold throughout the paper that the attacker’s cost ca is sufficiently large such that
attacker’s problem has an interior solution.

Assumption 1. ca >
g
2 .

A distinguishing feature of cyber risk, relative to other forms of operational risk, is that
it is brought forth by a strategic adversary (Eisenbach et al. 2022). In our model, we see this
actualize through the attacker’s equilibrium attack strategy 1

ca

√
φ(sp)H(µp), which targets

platforms with greater vulnerability and more members. In contrast, operational risk also
loads onto technological vulnerabilities of a platform, but external risk factors are less likely
to be endogenously affected by the vulnerability itself. For example, operational risk may be
determined by some factor ā such that a major operational event, such as system outages aris-
ing from a natural disaster, arises with probability

√
φ(sp) · ā. In comparison, a cyber attacker

amplifies vulnerabilities through its attack intensity, resulting in a probability of a successful
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attack that is significantly more exposed to potential shortfalls in security investments made
by the platform.

Traders’ Problem. We turn to the platform choice problem of traders. At a high level, traders
value platforms based on two dimensions. The first dimension is financial value, determined
by the expected gains that accrue from executing and settling traders on a platform. Platforms
offer improved matching between member traders and liquidity savings through multilateral
netting, which makes activities on a platform advantageous relative to private activity. The
economies of scale present on a platform are endogenously determined by the size of its
user base. The second dimension is technological value, determined by the expected losses
arising from cyber attacks that exploit vulnerabilities in the platform’s systems. This second
dimension is endogenously determined by platforms’ security investments and attackers’ at-
tack intensity. As represented in the attacker’s payoff function, gains from a successful attack
are assumed to grow with a platform’s user base. Hence, all else equal, attacks are intensified
as a platform grows, and stands as a source of dis-economies of scale.

We first show that an individual trader’s preference for platform 1 relative to platform 2
can be represented as the following:

Lemma 1 (FT Decomposition). An individual trader’s valuation of the membership of platform 1
(relative to platform 2) can be represented as:

τxt − y(χ1 − χ2)︸ ︷︷ ︸
relative non-trade losses

+ τF(µ1 − µ2)︸ ︷︷ ︸
relative financial value

− τT(µ1χ1 − µ2χ2),︸ ︷︷ ︸
relative technological value

(8)

where F and T take the general formulation:

F = ep

(
β− 1

m
κ

)
︸ ︷︷ ︸

trade surplus from platform

− e0(β− κ),︸ ︷︷ ︸
trade surplus from private

(9)

T = βep(1− r)︸ ︷︷ ︸
trade-related loss

− κep

(
1
m

f − r
)

.︸ ︷︷ ︸
collateral-related loss

(10)

In addition to an individual trader’s idiosyncratic preference xt, the relative value of
platforms is comprised of two components: F(µ1 − µ2), which captures relative financial
value, or the unconditional relative gains that accrue from the relative size of platforms; and
T(µ1χ1 − µ2χ2), which represents relative technological value, or the difference in expected
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losses from operational vulnerabilities. This characterization offers an interpretable represen-
tation of individual traders that will allow us to re-map equilibrium outcomes to the prim-
itives of the economic and operational dimensions. To focus exposition, we set y = 0 from
here forth.

With this characterization, consider the relative payoff of choosing 1 over 2 for trader t
shown in Lemma 1. Substituting in the probability of an attack χp, we obtain:

xt + F (µ1 − µ2)− T (µ1χ1 − µ2χ2) =xt + F (µ1 − µ2)− T
(

µ1
1

2ca
φ(s1)H(µ1)− µ2

1
2ca

φ(s2)H(µ2)

)
(11)

Recall, the attack intensity is comprised of H(µp) = 1− h
µp

. Further simplifying the expres-
sion, we obtain:

xt + F (µ1 − µ2)︸ ︷︷ ︸
Platform economies

− T
2ca

((φ(s1)µ1 − φ(s2)µ2)︸ ︷︷ ︸
Relative losses

+
T · h
2ca

(φ(s1)− φ(s2))︸ ︷︷ ︸
Cyber diseconomies

(12)

The above equation provides further decomposition of the relative technological value. In
addition to the relative financial value, which is determined by platforms’ economies of scale
(i.e. F(µ1 − µ2)), the relative technological value is comprised of two parts. The first part,
relative losses, represents the absolute difference in the security stances of each platform. The
second part represents a cyber diseconomy, which arises due to the greater intensity of attacks
expected on platforms of larger size. Users rationally anticipate that platforms with more
users are also more attractive targets and incorporate this into their platform choice.

In an interior equilibrium, a trader of type t∗ is indifferent between the two platforms.
In such an equilibrium, by the uniformity of xt, a σ−x∗

2σ fraction of traders with xt > x∗

prefer 1 over 2, and the remaining x∗+σ
2σ of traders with xt < x∗ prefer 2 over 1. This implies

µ1 = η1 + λ σ−x∗
2σ . Substituting in the expression for x∗ yields:

2σ

λ
(µ1 − η1)− σ =µ1

(
2F− T

2ca
(φ(s1) + φ(s2))

)
︸ ︷︷ ︸

marginal network gain of platform 1 over 2

−µ

(
F− T

2ca
φ(s2)

)
︸ ︷︷ ︸

network gain of platform 2

+
Th
2ca

(φ(s1)− φ(s2))

(13)

As long as idiosyncratic preferences are sufficiently heterogeneous (i.e., σ > λF), an inte-
rior equilibrium arises in which a trader with preferences xt = x∗ is indifferent between the
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two platforms, summarized below3:

Proposition 2. Let σ > λF. The equilibrium mass of traders in platform 1 is given uniquely by

µ1 = max {η1, min {η1 + λ, µ̃1}} (14)

where

µ̃1 =
σ + 2σ

λ η1 − µ
(

F− T
2ca

φ(s2)
)
+ Th

2ca
(φ(s1)− φ(s2))

2σ
λ −

(
2F− T

2ca
(φ(s1) + φ(s2))

) .

Platform security. The above proposition pins down the equilibrium mass of traders at each
platform, taking as given security investments of the platforms. At t = 0, platforms simultane-
ously choose security investments. To simplify the expressions, we focus on interior equilibria,
defined as s∗p ≥ 0, µ̃∗p ∈ [ηp, ηp + λ] for both platforms.

Platform p chooses the level of security investments to maximize:

µ̃p − cssp. (15)

Because successful attacks primarily inflict costs directly on users, platforms do not explic-
itly factor this into their decision to lower technological vulnerability. However, the platform’s
profits are proportional to the mass of traders on its platform, and hence, it internalizes these
risks through its impact on its ability to attract members, µ̃p. The mass of traders who choose
the platform, in turn, depends on the competitiveness of their offering relative to that offered
by their competitor.

We solve for platforms’ equilibrium security investment strategies, summarized in the
following proposition.

Proposition 3. In any interior equilibrium, the investment of platform p is given by

s∗p =
1
G

ln
(

1− Np −
1

Np

cs

G (µ− 2h)

)
+

1
G

ln
TgG (µ− 2h) λ

4cacs (σ− λF)

where

Np ≡
1
2
− σ

2 (σ− λF) (µ− 2h)
(
ηp − ηp′

)
3The set of equilibria in the general case can be found in the proof of Proposition 2.
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and yields

φ(s∗p) =
2cacs

( 2σ
λ − 2F

)
TG (µ− 2h)

1
1− Np − 1

Np

cs
G(µ−2h)

. (16)

We are now able to fully characterize the interior equilibrium, its associated market struc-
ture, and fully outline the probability of a successful attack:

Theorem 2. In any interior equilibrium,

µ∗p = ηp +
λ

2

(
1 +

(
ηp − ηp′

) F
σ− λF

)
Assuming that η1, η2 are bounded away from h and cs

G is small enough, the unique equilibrium is
interior if and only if σ

λ − F ≥ |η1 − η2|.4 The probability of a successful attack on platform p is given
by:

χ∗p =
cs

TGµ∗p
·
(

2σ

λ
−
(

2F− T
2ca

(φ(s∗1) + φ(s∗2))
))

(17)

=
cs
( 2σ

λ − 2F
)

TG (µ− 2h)
1

1− Np − 1
Np

cs
G(µ−2h)

[
1− h

ηp +
λ
2

(
1 +

(
ηp − ηp′

) F
σ−λF

)] (18)

The probability of a cyberattack represents the equilibrium level of technological risk
posed to users as a consequence of the security choice of platforms and the attack intensity
chosen by the adversary. In equilibrium, a platform faces a lower likelihood of a cyberattack
when it has more traders (i.e. larger µp) and when losses associated with technological failure
are greater (i.e. larger T). It is worthwhile noting that a positive probability of a cyberat-
tack is not necessarily inefficient if security costs become prohibitively high. We examine the
conditions for inefficiency in the next section.

4 Public-Private Wedge in Technological Resiliency

In the absence of regulation, security levels are determined competitively. Platforms offer
outside options to non-users, and hence, users’ platform choice acts as a disciplining device.
Whether equilibrium security levels at each respective platform are inefficient largely depends
on the extent to which competitive forces align with optimal levels.

4A sharp characterization of when the equilibrium is interior can be found in the appendix in Proposition (9).
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To evaluate divergence from the social optimum, we analyze the optimal security levels,
taking the distribution of users between platforms as given. Before proceeding, it is useful to
overview the rationale for this benchmark choice. This ex-post benchmark is chosen for both
theoretical and practical reasons. From a theoretical standpoint, network effects arise from
both the financial and technological value of a platform. Trade surplus, and associated liq-
uidity benefits are maximized by connecting all traders on a single platform, which naturally
biases the optimum toward concentration. Economies also arise from concentrating security
investments into a single platform instead of dispersed investment into multiple platforms. In
the context of our model, both forces push the social optimum to a solution with a single plat-
form with significant levels of security investment.5 Unsurprisingly, foundational financial
infrastructures, such as wholesale payment systems or Treasury security settlement systems,
are often run directly by central banks, who are positioned to fully internalize the value of
technological resiliency.6

From an institutional standpoint, the benchmark solution is consistent with common regu-
latory frameworks, which are mandated to establish supervisory standards for firms, taking as
given the underlying market structure. Market structure and risks associated with concentra-
tion (or lack thereof) are implicitly considered in regulatory choices through their implications
on vulnerabilities, but not policies are not geared toward affecting the relative competitiveness
of a firm, for various reasons, including issues of political economy and fairness. Hence, a
benchmark on ex-post security choice offers implications that are more readily applicable to
policy.

Consider a planner’s objective to maximize utilitarian welfare, taking as given µp.

τµ2
p

(
ep

(
β− 1

m
κ

)
− Tχp

)
− cssp (19)

Intuitively, the planner chooses security levels, taking into account the volume of trade be-
tween traders of a given platform, epτµ2

p. Taking the first order condition yields:

τµ2
p

T
2ca

φ(sp)H(µp)− cs = 0 (20)

5The argument is straightforward. Setting aside xt for a moment, the first-best allocation of traders taking as
given optimal security levels is τ ∑p ep β̄µ2

p − cs
τG , which increases in µp′ , where p′ is the dominant platform. This

implies that with xt, optimal allocation balances between private preferences and network efficiency, whereby the
marginal value of adding a trader to the dominant platform is equal to xt (which is negative if p′ = 1).

6A notable exception is on the question of redundancies in critical infrastructure. Although our model does not
directly capture redundancies in the midst of an attack, users’ platform choice takes into account the likelihood
of larger platforms to be favorable targets.
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Rearranging the equation, we pin down the optimal security investment for each platform:

Proposition 4. At the optimal security investment level ssoc
p , technological vulnerability of platform p

is given by:

φ(ssoc
p ) =

1
τµp

2cacs

(µp − h)TG
. (21)

The socially optimal investment level directly takes into account expected losses associated
with an attack, which include platform size µp, trade activity τ, and conditional losses T. In
addition, it internalizes the attacker’s cost ca, and increases with the platform investment cost
cs.

We revisit the equilibrium strategies and outcomes in the competitive environment. Equi-
librium security investment strategies and technological vulnerabilities are complicated ex-
pressions. We exploit an equilibrium characteristic that assists with analysis:

Corollary 1. In equilibrium, technological vulnerability of platform p satisfies:

φ(s∗p) =
2cacsΩ

TG(µ∗p − h)
, where Ω =

2σ

λ
−
(

2F− T
2ca

(φ(s∗1) + φ(s∗2))
)

. (22)

Now, consider the difference in technological vulnerability of the platforms implied by the
public and private investment choices. We use the above corollary to re-formulate φ(s∗p) in
terms of φ(ssoc

p ):

φ(s∗p) = τµp

(
2σ

λ
−
(

2F− T
2ca

(φ(s∗1) + φ(s∗2))
))

︸ ︷︷ ︸
=τµpΩ≡Ωp

φ(ssoc
p ) (23)

Here, Ωp represents a public-private wedge in technological vulnerability for platform p. Private
investment is lower (greater) than what is publicly optimal if Ωp > 1 (Ωp ≤ 1).

Lemma 2. The public-private wedge in technological vulnerability is given by:

Ω∗p = τµp︸︷︷︸
platform-specific vulnerability

· Ω︸︷︷︸
common vulnerability

(24)

The public-private wedge Ωp of platform p is comprised of two components. The first
component τµp is platform-specific vulnerability which represents the level of financial mar-
ket activity on a platform. This arises primarily because the platforms focus on user base,
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rather than activity, in determining their security choice. As market-level activity, whether
through user base or trade volume, increases, the wedge increases. The second component Ω
represents a common vulnerability shared across platforms and results from potential ineffi-
ciencies arising from discipline brought forth through competition. To see this, observe that
Ω can be expressed in terms of market share:

Ω =
2σ

λ
− 2F +

T
2ca

τΩ ∑
p

µpφ(ssoc
p ) (25)

Ω =
2σ
λ − 2F

1−∑p
cs

G(µ∗p−h)
, (26)

which implies that Ω increases as platforms’ market shares become more asymmetric. We
make the following observation.

Proposition 5. The public-private wedge increases in market size τµ, and Ω increases in imbalances
in market share |µp − µp′ |.

In other words, competition, as a disciplining mechanism to incentivize security invest-
ments by platforms, is most effective when platforms are even in market shares, and deterio-
rates as they become more asymmetric.

More generally, we attain the following result:

Theorem 3. Private security investment is generally inefficient, that is, Ω 6= 1. Moreover, Let
σ
λ − F ≥ 1

2 −
2cs

(µ−2h)G . Then, the nature of inefficiency is:

• Inefficiently high investment for low |ηp − ηp′ |;

• and inefficiently low investment for large |ηp − ηp′ |.

Intuitively, one aspect to think about is that private incentives to invest are driven by the
value accruing to the ”marginal” user, and not the overall cost. This results in overinvest-
ment when the marginal user is more sensitive to security strength, and less so once there is
sufficient difference in size between the two platforms.

5 Dynamics of Technological Vulnerability

In the static equilibrium, inefficiencies in investment can go either way and are determined
by the underlying market structure. This points to the importance of considering the dynamic
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evolution of market structure in concurrence with technological vulnerabilities of the financial
system. In this section, we explore this issue by considering a dynamic extension of the model.

Dynamic Extension. We now extend our model to a dynamic environment. There are in-
finitely many periods t = 1, 2, 3..., ∞. We use superscripts to denote the period. At the
beginning of subsequent periods t ≥ 1, each platform chooses its level of security investment.
Investments into security is assumed to fully depreciate every period.7

As before, there is a µ mass of traders. Each platform has a mass η̄ are long-term “anchor”
traders, who remain a user at the respective platform indefinitely. Anchor traders may be
those who prefer a platform for strong idiosyncratic preferences or unmodeled feasibility
constraints arising from geographical or regulatory factors. The remaining µ∗ ≡ µ− 2η̄ mass
of traders are distributed across platforms, with a total of µ0

p on platform p, where ∑p µ0
p = µ.

In each period, traders (excluding anchor traders) independently receive an opportunity to
switch platforms, with probability α. All other traders remain on their platform from the
previous period t− 1.

After traders choose their platforms, an adversary arrives with probability γ. As before,
the adversary chooses the attack intensity for each platform. We assume that all agents behave
myopically and make decisions to maximize current period payoffs.8

Dynamic Equilibrium. In effect, the baseline game is played in each period. The masses
of incumbent traders (ηt

1, ηt
2) are determined by the previous period’s platform adoption

(µt−1
1 , µt−1

2 ).

Law of motion. At the end of period t− 1, the mass of traders on platform p is µt−1
p . The

mass of incumbent traders at platform p at the beginning of period t is

ηt
p = (1− α) (µt

p − η̄) + η̄. (27)

We assume that α < σ
(µ−2η̄)F , which roughly corresponds to the dynamic analog of our

baseline assumption σ > Fλ. Then Theorem 2 defines the law of motion of the mass of
traders in each platform as long as the solution is interior.

7In addition to tractability, this captures the notion that investments must be made to adapt platform security
to the quickly evolving nature of cyber risk.

8Our object of interest is the evolution of the mass of traders across platforms. The myopia across periods is
an innocuous assumption in the sense that it simply attenuates the convergence rates and the laws of motion, but
it buys simplicity and tractability. The assumption that investment in security depreciates ensures that qualitative
results are robust.
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Denote R = 1− α
σ−(µ−2η̄)F

σ−α(µ−2η̄)F . Note R ∈ (0, 1) if σ > (µ− 2η̄) F and R > 1 if σ < (µ− 2η̄) F.

We first characterize the set of possible equilibrium paths of market dynamics:

Proposition 6. For small enough cs
G the following hold.9 If µ0

1 = µ0
2, then µt

2 = µ
2 at every t.

Otherwise, let µ0
1 > µ0

2 without loss of generality.

• If σ
F − λ ≥ (1− α)

(
µ0

1 − µ0
2
)

and σ > (µ− 2η̄) F, then equilibrium is interior in every period
and µt

p = µ
2 + Rt

(
µ0

p −
µ
2

)
. Both µt

p converge monotonically to µ
2 ;

• If σ
F − λ ≥ (1− α)

(
µ0

1 − µ0
2
)

and (µ− 2η̄) F > σ, then equilibrium is interior during t ≤ t ≡⌊
ln( σ

F−λ)−ln(2(1−α)|µ0
p−

µ
2 |)

ln R

⌋
and boundary for t > t. During t ≤ t, µt

p = µ
2 + Rt

(
µ0

p −
µ
2

)
.

During t > t, µt
2 = η̄ + (1− α)t−t

(
µ
2 − Rt ( µ

2 − µ0
2
))

and µt
1 = µ− µt

2;

• If (1− α)
(
µ0

1 − µ0
2
)
> σ

F −λ, then equilibrium is corner every period, µt
2 = η̄ +(1− α)t (µ0

2 − η̄
)

and µt
1 = µ− µt

2. Platform 2 does not invest.

Intuitively, if the platforms are sufficiently unequal from the beginning (i.e. (1− α)
(
µ0

1 − µ0
2
)
>

σ
F − λ), network effects dominate and all “free” traders move to the larger platform at every
period. Consequently, the difference in platform size, µt

1 − µt
2, widens, and the smaller plat-

form shrinks to size f at the limit.
In the case where platforms begin with roughly equal (but not identical) size (i.e. 0 <

(1− α)
(
µ0

1 − µ0
2
)
< σ

F − λ), the ratio between variation in idiosyncratic preferences and net-
work effects determines the long-term market structure. In particular, if the variation in
preference σ is sufficiently large relative to complementarities (µ− 2η̄) F, neither platform is
“sticky” and the market is split in the long-run, resulting in a shrinking gap in size µt

1 − µt
2

over time. However, with large complementarities (µ− 2η̄) F, the larger platform eventually
captures the majority of the market over time, and the gap µt

1 − µt
2 grows at a rate R that is

proportional to the relative complementarity (µ−2η̄)F
σ up to the point t. After this point, the

gap grows faster as all “free” traders choose the dominant platform regardless of their id-
iosyncratic preferences. It is also worthwhile to mention that both platforms invest in interior
equilibria. It is easy to see that the smaller platform does not invest in corner equilibria as
there is no benefit to investing in technology. Consequently, Proposition 6 also shows that
the smaller platform eventually stops investing unless the heterogeneity is large relative to
complementarities and the initial gap is not too wide.

9 cs
G <

(
µ−2h
2η̄−2h +

(
σ
λ − A

) 4ca
TF

)−1
(η̄ − h)
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A dynamic implication is that along any path of increased consolidation, within a discrete
number of periods, security investments drop below the social optimum:

Theorem 4 (Tipping point). For any equilibrium path of consolidation, there exists a tipping point
at which investment by both platforms drop below the socially optimal.

We call this the tipping point: when private competition between platforms is no longer
sufficient to ensure adequate security levels and technological vulnerability is above what is
desirable from a social standpoint. Past this tipping point, there is loss in efficiency directly
as a result of inefficiently high exposure to operational disruptions, and in particular, cyber
adversaries.

We refer to efficiency loss as technological drag. Descriptively, as markets consolidate
around a dominant platform, the platform lowers in security investment, and this directly
translates into an increased barrage of attacks from cyber adversaries. This increases the
likelihood of a cyber attack and also increases the impact of an attack conditional on being
successful, as more traders are dependent on the platform’s technological resiliency. Given
the potential for material impact on traders and their activities, it is natural to think about how
changes in technological resiliency affect trading itself and how it might amplify inefficiencies.
We explore this in the next section.

6 Trading, Amplification, and Technological Drag

So far, platforms affected trading activity only through agglomeration in activity through
improved on-platform matching. In this section, we extend the benchmark model to endog-
enize trading along two dimensions, trading strategy and intensity, and analyze how cyber
vulnerability is affected and eveen amplified by endogenous financial activity.

Endogenous Trading. Consider the following modifications. At the beginning of the period,
and before idiosyncratic preferences are realized, traders collectively commit to an investment
in τ at some cost cτ(τ), where c′τ(·), c′′τ (·) > 0.10 This investment represents costs associated
with the acquisition of resources to maintain a trading capacity of τ. Afterwards, as before,
platforms make security choices. Idiosyncratic preferences are realized and traders choose
platforms. After choosing platforms, traders select their trading strategies z, which is either
H or L, which differ in terms of the trading return βz and netting benefit mz.

10To isolate the effects arising from the interplay between traders and platforms, we assume investment choice
is collectively determined.
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Specifically, each trader chooses whether to shift its on-platform trading strategy from
a baseline strategy of L, which involves high return and low netting benefit, to H, which
involves low return and high netting benefit. In order to isolate the impact of technological
risk on trading patterns, the net financial return of strategies is assumed to be identical, i.e.

βH − 1
mH κ = βL − 1

mL κ. (28)

This implies that in the absence of technological risk, traders would be indifferent between
the two, and intuitively, both lie on the “liquidity-return” frontier. We use Fz and Tz to denote
the financial and technological values given trading strategy z. By shifting to H, the trader is
assumed to implement an H-trading-strategy with other traders who choose H, and maintain
an L-trading-strategy with others who keep to L.

We start by considering the trading strategy of trader t on platform p. A trader t on
platform p’s payoff is given by:

xt + ep

(
βz − 1

mz κ

)
µp + e0(β− κ)µ−p − Tzµpχp (29)

Since net return
(

βz − 1
mz κ
)

is identical across trading patterns, the trader maximizes pay-
off by minimizing T. Note that:

TH − TL =
(

βH − βL
)

ep(1− r)− κep

((
1

mH −
1

mL

)
f
)

(30)

= ep

[(
βH − βL

)
(1− r− f )

]
. (31)

Thus, traders strictly prefer a trading strategy with lower β and higher m if f < 1− r:

Lemma 3. Suppose that f ≤ 1− r. Traders’ optimal trading strategy is z = H.

Whenever two trading strategies deliver identical net financial return, traders prefer the
strategy that results in lower exposure to technological risk. A cyberattack results in trade
losses that scale with βz, and collateral losses, which scale with the level of pledged collateral.
To minimize losses, traders choose the strategy that effectively lowers T. As long as collateral
recovery is not too high f < 1− r, strategy H delivers both lower trade losses and requires
less collateral per trade, making it strictly preferable to strategy L.

A shift in traders’ trading strategy to lower technological risk exposure directly impacts
platform’s security choices. Specifically, let us revisit platform p’s technological vulnerability
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φ(s∗p) given Tz,

φ(s∗p) =
2cacsΩ

TzG(µ∗p − h)
, (32)

which strictly decreases in Tz. This implies the following:

Proposition 7. Choosing lower T increases vulnerability φ(s∗p) and increases probability of attack χp.

The intuition for this result is the following. Technological considerations lead to a clear
tie-breaking between any two strategies with similar net financial returns but differential
exposure to technological risk. By choosing trading strategies that lower technological expo-
sure, financial markets have greater tolerance to cyberattacks more broadly. This tolerance,
resulting from the endogenous reaction to lower exposure, leads to a decrease in security in-
vestment by platforms, and correspondingly, to an increase in vulnerability and probability
of a cyberattack.

Now, consider the trading capacity τ chosen by traders, who anticipate platforms’ market
shares and security investments.

τE
[

xt + ep

(
βH − 1

mH κ

)
µp + e0 (β− κ) µ−p − THµpχp

]
− cτ(τ) (33)

= τ

[
Pr(xt > x∗)

(
E[xt|xt > x∗] + F(µ1 − µ2)− TH(µ1χ1 − µ2χ2)

)
+
(
ep(βH − κ

mH )µ2 + e0 (β− κ) µ1 − THµ2χ2
) ]

− cτ(τ) (34)

= τ

σ− x∗

2σ
(E[xt|xt > x∗]− x∗) +

(
ep

(
βH − κ

mH

)
µ2 + e0 (β− κ) µ1 − THµ2χ2

)
︸ ︷︷ ︸

?(s1,s2)

− cτ(τ)

(35)

Trading capacity τ increases in ?, the expression in the bracket, which we can further simplify:

σ− x∗

2σ
(E[xt|xt > x∗]− x∗) +

(
ep

(
βH − κ

mH

)
µ2 + e0 (β− κ) µ1 − THµ2χ2

)
(36)

=

( 2σ
λ (µ1 − η1)

)2

4σ
+ ep

(
βH − κ

mH

)
µ− Fµ1 − THµ2χ2. (37)

Since equilibrium market shares µ1 an µ2 are invariant with respect to technological vulnera-
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bility, the main factor to consider is THµ2χ2:

THµ2χ2 = THµ2φ(s2)
1

2ca
H(µ2) (38)

=
cs

G
Ω (39)

Recall that by Proposition 5, Ω increases in the asymmetry of market shares between
platforms. Hence, as the common vulnerability component Ω increases, investment into τ

decreases.

Proposition 8. As common vulnerability Ω increases, τ∗ decreases.

Technological drag arises from both an ex-post and an ex-ante standpoint. From an ex-
ante standpoint, as the common vulnerability component Ω increases, traders lower trading
capacity τ. To see this, let cτ(τ) = cτ

2 τ2, for which we attain τ∗ = ?(s1,s2)
τc

. From an ex-
ante standpoint, traders lower investment into their trading capacity in direct response to
technological vulnerabilities, and this corresponds to a decrease in trading intensity by cs

Gcτ
as

Ω increases.
From an ex-post standpoint, disruptions in platform operations result system-wide eco-

nomic costs arising from trade and collateral losses, with inefficiently heightened probability
of cyberattacks resulting in excess cost per unit trade of:

τTH ∑
p

µ2
p

(
χp(s∗p)− χp(ssoc

p )
)
= τTH ∑

p
µ2

p(Ωp − 1)φ(ssoc
p )

H(µp)

2ca
(40)

=
cs(τµΩ− 2)

G
, (41)

which is positive if τµΩ > 2. Since this condition relaxes as market shares become more
asymmetric, we have:

Theorem 5 (Technological drag). Technological drag increases as the system becomes more concen-
trated.

7 Evidence from the Tri-Party Repo Market

The theory indicates that in the absence of regulation, technological vulnerabilities rise
when markets become consolidated. Given system-wide consolidation in the past half-century,
this points to the possibility for under-provision of technological resiliency across various
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parts of the financial system. There are severe limitations to testing implications of the the-
ory. First, most firms generally do not report information on investments into technology,
let alone cybersecurity. Second, the intensity at which attackers target any individual insti-
tution is not directly observable. Third, even if investments are observable, identifying the
link between market structure and technological investment can be challenging since they are
co-determined.

To tackle this, we exploit the exit of a duopolist in tri-party repo settlement, which resulted
in a single bank solely responsible for the entire market. As background, the tri-party repo
market consists of lenders, borrowers, and clearing banks. Clearing banks act as platforms by
facilitating clearing and settlement for repo transactions, acting as the “third-party.” By 2005,
only two clearing banks existed in the market: Bank of New York Mellon (BNY) and JPMorgan
Chase (JPMC). In 2016, JPMC announced its intent to wind down its tri-party operations and
fully exited in 2019. Consequently, as of 2019, BNY represents the sole operator of tri-party
repo, which is vital to treasury and money markets, and is key to monetary policy operations
as well, including the repo and reverse-repo facilities.
Data and empirical strategy. We use the full exit of JPMC as a shock to market structure,
and examine whether there are material changes in BNY’s investments in technology. In
this setting, we are able to alleviate some aforementioned limitations. First, although JPMC’s
market share declined over time, its full exit and choice not to sell its business to a different
party signified full consolidation of tri-party settlement and represented fundamental change
to the market structure. This enables us to identify changes in investment triggered by full
consolidation. Second, as a regulated institution, BNY reports detailed information about its
operations, including its IT-related expenses. We use the IT investment series provided by
Modi et al. (2022), which identifies technological expenditures on regulatory filings and dis-
closures. IT investments include various expenditures, including cyber-related investments,
which by industry reports, represent 6-14 percent of IT expenditure Insights (2019). Although
many banks do not report consistently over the entire sample, BNY consistently reported
expenses throughout the entire sample period from 2001 to 2021.11 Finally, the intensity of
cyberattacks over our sample period from 2001 to 2021 follow a general upward trend based
on industry reports, which would suggest absolute drop in investment would indicate under-
investment.12

We augment the data with bank-level characteristics from Call Reports. We obtain repo
market share data by combining NY Fed Tri-Party Repo data and quarterly and annual reports

11See Modi et al. (2022) for detailed description of the data.
12For example, see the Chapter 3 of the IMF Global Financial Stability Report.
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from BNY and JPMC, which allows us to verify the timing of full exit. A notable event
during our sample period is the tri-party repo market reform, which was initiated in response
to weaknesses revealed during the financial crisis.13 One of the actionable steps required
settlement banks, namely BNY and JPMC, to make technological investments to improve
resiliency and compliance. The process for technological improvements began in 2010, and
necessary investments were reportedly met by 2014.

We take a difference-in-difference approach to test whether technological investments at
BNY changes following the exit of JPMorgan. Our most saturated specification is:

ITit = Re f ormt × BNY + Exitt × BNY + δi + γt + ε it (42)

where ITit is the IT investment over assets of firm i in year t, Re f ormt is 1 for observations
starting 2010 to 2014, during which tri-party market infrastructure reform took place, and
Exitt is 1 for the period following JPMC’s exit. We also include bank and year fixed effects.
In the univariate specification, we include the average IT expenditure over assets of the top
30 banks, excluding BNY and JPMC, which takes into account IT investment trends of other
large banks.

The results for the univariate and panel regressions, reported in Tables 1 and 2, offer a
consistent picture. We find broad evidence of a significant decline in IT investment at BNY
following JPMC exit from tri-party repo settlement. JPMC’s exit is estimated to have resulted
in a drop of 0.148 IT expenditure per asset dollar at BNY. After accounting for excess IT
expenses to have occurred as a result of the market reform, the estimate remains roughly the
same, at about 0.131 IT expenditure per asset dollar. Altogether, we find a strong association
between IT investment and market consolidation.

The drop in technological investment at BNY is evident in Figure 3 in absolute scale and
relative to other large banks. Consistent with large investments necessary to meet objectives of
the tri-party reforms, BNY investments jump in 2010 and stay elevated relative to trend until
2014, at which point reform goals were met. It continues to rise until 2019, at which invest-
ments significantly decline relative to trend. During our entire sample period, technological
investment at other large banks grows, as documented in Modi et al. (2022).

We do not see any material change in BNY’s investment trend in response to the announce-
ment of JPMC’s exit in 2016. As explained earlier, in principle, JPMC could have chosen to
spin off or sell its tri-party repo settlement business instead of winding down its operations,

13See here for more detail.
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Figure 3: IT expenditure of BNY and other large banks. The blue line represents the IT
expense over assets for BNY, and the red line represents the average IT expense over assets
for the top 30 banks excluding BNY and JPMC.

which would have preserved the duopoly market structure. Doing so could have maintained
competitive dynamics that would incentivize technological investments to retain and extend
market shares. Continuing investment would be consistent with our model predictions, in
which the dominant platform maintains investments to extend its market share. In this re-
spect, the point of full market consolidation (and clean exit of JPMC) may have represented
the actual point at which certain resolutions were reached in the competitive landscape of
tri-party repo settlement.

8 Conclusion

This paper proposes a theory of financial system architecture that incorporates techno-
logical vulnerabilities that are determined endogenously through platforms’ investment deci-
sions. In our model, platforms provide enhancements along both trade and post-trade stages,
both which generate network effects. At the same time, platforms must also invest into se-
curity to strengthen technological resiliency of the financial system against attackers seeking
to exploit system weaknesses. Natural complementarities in platforms’ services attenuate
technological resiliency. Our framework also links primitive market features to technological
vulnerability, including the velocity of financial markets.

A key result is that a wedge generically arises between the socially optimal and privately
optimal level of security. This points to the importance of corrective measures, such as regu-
lation, to ensure that adequate levels of investment are taking place that fully internalize the
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system-level costs associated with a cyber impairment. We find these vulnerabilities evolve
non-monotonically over the maturity of a financial system, and in particular, exhibit a tip-
ping point at which technological resiliency diverges from optimal. This also happens to be
the circumstance under which the underlying architecture becomes sufficiently consolidated,
a pattern that is observed empirically. Under such circumstances, in the short-run, techno-
logical vulnerabilities create nontrivial losses, as traders have no viable outside option and
incur costs associated with trade and collateral impairments. In the long run, the heightened
frequency of successful attacks creates drag on the financial system.
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Aldasoro, Iñaki, Leonardo Gambacorta, Paolo Giudici, and Thomas Leach, “The drivers of
cyber risk,” Journal of Financial Stability, 2022, 60, 100989.

Anand, Kartik, Chanelle Duley, and Prasanna Gai, “Cybersecurity and financial stability,”
2022.

Anderson, Ross, “Why information security is hard-an economic perspective,” in “Seven-
teenth Annual Computer Security Applications Conference” IEEE 2001, pp. 358–365.

and Tyler Moore, “The economics of information security,” science, 2006, 314 (5799),
610–613.

Awrey, Dan and Joshua Macey, “Open Access, Interoperability, and the DTCC’s Unexpected
Path to Monopoly,” 2021.

Brando, Danny, Antonis Kotidis, Anna Kovner, Michael Lee, and Stacey L Schreft, “Impli-
cations of cyber risk for financial stability,” 2022.

Brolley, Michael, David Cimon, and Ryan Riordan, “Efficient Cyber Risk: Security and
Competition in Financial Markets,” Available at SSRN, 2020.

Crosignani, Matteo, Marco Macchiavelli, and André F Silva, “Pirates without Borders: The
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A Tables

Table 1: Impact of JPMC Exit on BNY’s IT Expenditure

BNY IT Expenditureit Assetsit

(1) (2)

Exitt -0.212∗∗∗ -0.181∗∗∗

(-6.026) (-6.025)

Big ITt 1.205∗∗∗ 1.094∗∗∗

(6.714) (7.329)

Reformt 0.052∗∗∗

(3.234)

Constant 0.088∗∗∗ 0.086∗∗∗

(3.991) (4.808)

R2 0.72 0.83
Observations 21 21

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

This table provides regression estimates of the change in BNY’s IT expenditure, normalized
by assets, in the period following JPMC’s exit. BIG ITt is the average IT expenditure over
assets of the top 30 banks by size excluding BNY and JPMC.Significance at the 10% level is
denoted by *; 5%, by **; and 1%, by ***
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Table 2: Impact of JPMC Exit on BNY’s IT Expenditure

IT Expenditureit Assetsit

(1) (2) (3) (4)

Exitt × BNY -0.144∗∗∗ -0.128∗∗∗ -0.148∗∗∗ -0.131∗∗∗

(-3.078) (-2.663) (-3.274) (-2.833)

Reformt × BNY 0.061 0.059
(1.554) (1.570)

Firm FE Y Y Y Y
Time FE N N Y Y
R2 0.80 0.80 0.82 0.82
Observations 629 629 629 629

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

This table provides panel regression estimates of the change in IT expenditure of the top 30
banks (excluding JPMC), normalized by assets, in the period following JPMC’s exit. Signifi-
cance at the 10% level is denoted by *; 5%, by **; and 1%, by ***
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B Proofs

Proof of Proposition 1. The attacker chooses ap to maximize
√

φ(sp)apH(µp) − caap. The
solution is given by the FOC:

√
ap =

1
2ca

√
φ(sp)H(µp).

Consequently, the successful attack probability is

χp =
√

φ(sp)ap =
√

φ(sp)
1

2ca

√
φ(sp)H(µp) =

1
2ca

φ(sp)H(µp).

Proof of Proposition 2. Recall that the relative payoff of choosing 1 over 2 for trader t is

xt + F (µ1 − µ2)− T (µ1χ1 − µ2χ2)

=xt + F (µ1 − µ2)− T
(

µ1
1

2ca
φ(s1)H(µ1)− µ2

1
2ca

φ(s2)H(µ2)

)
=xt + µ1

(
2F− t

1
2ca

(φ(s1) + φ(s2))

)
+

(
−Fµ + T

1
2ca

(µφ(s2) + h (φ(s1)− φ(s2)))

)
Suppose that all traders join the same platform, say 1. This is an equilibrium if and only if

trader t with xt = −σ prefers platform 1 when µ1 = η1 + λ. Call this corner-1 PCE (platform
choice equilibrium) of the subgame. The condition is given by

0 < −σ + (λ + η1)

(
2F− T

1
2ca

(φ(s1) + φ(s2))

)
+

(
−Fµ + T

1
2ca

(φ(s2)µ + h (φ(s1)− φ(s2)))

)
.

(43)

Similar argument holds for platform 2. If trader with xt = σ prefers platform 2 when
µ1 = η1, then all traders join platform 2 is an equilibrium. Call this corner-2 PCE. The
condition is

0 > σ + η1

(
2F− T

1
2ca

(φ(s1) + φ(s2))

)
+

(
−Fµ + t

1
2ca

(φ(s2)µ + h (φ(s1)− φ(s2)))

)
. (44)

Next suppose there is a marginal trader who is indifferent between the two platforms, t∗.
Denote x∗ = xt∗ . Call the corresponding equilibrium the interior PCE.

By the uniformity of xt, σ−x∗
2σ fraction of traders have xt > x∗ and prefer 1 over 2, whereas

x∗+σ
2σ fraction of traders have xt < x∗ and prefer 2 over 1, implying µ1 = η1 + λ σ−x∗

2σ . Equiva-
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lently, x∗ = σ− 2σ
λ (µ1 − η1). Then for an interior solution to µ1 ∈ [η1, η1 + λ], we have

0 = x∗ + µ1

(
2F− T

1
2ca

(φ(s1) + φ(s2))

)
+

(
−Fµ + t

1
2ca

(µφ(s2) + h (φ(s1)− φ(s2)))

)
= σ− 2σ

λ
(µ1 − η1) + µ1

(
2F− T

1
2ca

(φ(s1) + φ(s2))

)
+

(
−Fµ + t

1
2ca

(µφ(s2) + h (φ(s1)− φ(s2)))

)
= µ1

(
−2σ

λ
+ 2F− T

1
2ca

(φ(s1) + φ(s2))

)
+

(
σ +

2σ

λ
η1 − Fµ + T

1
2ca

(φ(s2)µ + h (φ(s1)− φ(s2)))

)
(45)

Here (45) is linear in µ1. So (45)= 0 has a solution µ1 between [η1, η1 + λ] if and only if
0 lies on the interval between the two extreme values of (45) obtained by plugging in η1 and
η1 + λ into µ1. Notice that if we substitute in µ1 = λ + η1, (45) becomes exactly (43). If we
substitute in µ1 = η1, (45) becomes exactly (44). Together this implies the corner value of (45)
at η1 is (44) and at η1 + λ is (45). Summarizing,

• If (43)> 0 >(44), both corners are PCEs and there is also an interior PCE given by
(45)= 0. There are three PCEs.

• If (43)< 0 <(44), neither corners are PCEs and the unique PCE given by (45)= 0.

• If (43),(44)> 0, only corner-1 is a PCE.

• If (43),(44)< 0, only corner-2 is a PCE.

Define µ̃1 as the solution to (45)= 0. Under F < σ
λ , (45) is decreasing in µ1. Then the possible

cases are

• If (43)< 0 <(44), the unique PCE is (45)= 0, and µ1 = min {η1 + λ, max {η1, µ̃1}} = µ̃1.

• If (43),(44)> 0, corner-1 is the unique PCE and µ1 = η1 + λ. In this case, µ̃1 > η1 + λ

since (45) is decreasing and (43)> 0. So µ1 = min {η1 + λ, max {η1, µ̃1}} = η1 + λ.

• If (43),(44)< 0, corner-2 is the unique PCE and µ1 = η1. In this case, µ̃1 < η1 since (45)
is decreasing and (44)< 0. So µ1 = min {η1 + λ, max {η1, µ̃1}} = η1.
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Altogether, the general solution is µ1 = min {η1 + λ, max {η1, µ̃1}}. Finally, it follows that

µ̃1 =
σ + 2σ

λ η1 − Fµ + T 1
2ca

(φ(s2)µ + h (φ(s1)− φ(s2)))
2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

=
σ + 2σ

λ (η1 − h) + (µ− 2h)
(

T 1
2ca

φ(s2)− F
)

2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

+ h.

Proof of Proposition 3. Conditioning on an interior equilibrium, given s2, platform 1 maxi-
mizes µ̃1 − css1. First we show that µ̃1 − h is log-concave in s1. After some normalization,
there are positive constants C and C′ such that

µ̃1 − h =
C

C′ + e−Gs1

In particular,

CgT
1

2ca
= σ +

2σ

λ
(η1 − h) + (µ− 2h)

(
T

1
2ca

φ(s2)− F
)

C′gT
1

2ca
=

2σ

λ
− 2F + T

1
2ca

φ(s2).

Note C′ > 0 by σ > λA. In the interior equilibrium, µ̃1 ≥ η1 > h, so C > 0. Then ln (µ̃1 − h) =
ln C− ln

(
C′ + e−Gs1

)
. The derivative of ln (µ̃1 − h) w.r.t. s1 is then

Ge−Gs1

C′ + e−Gs1
= G

(
1− C′

C′ + e−Gs1

)
.

This is clearly decreasing in s1. So µ̃1 − h is log-concave, thus quasi-concave. Then so is
µ̃1 − css1. Hence, the FOC gives the solution to the unconstrained problem of maximizing
µ̃1 − css1 under parametric restrictions that yield an interior equilibrium.

The FOC for 1’s problem is

−
σ + 2σ

λ (η1 − h) + (µ− 2h)
(

T 1
2ca

φ(s2)− F
)

(
2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

)2 T
1

2ca
φ′(s1)− cs = 0.
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Notice φ′(s1) = −FGe−Gs1 = −Gφ(s1). So

σ + 2σ
λ (η1 − h) + (µ− 2h)

(
T 1

2ca
φ(s2)− F

)
(

2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

)2 T
1

2ca
Gφ(s1)− cs = 0. (46)

This similarly holds for platform 2. Denote

Xp = σ +
2σ

λ

(
ηp − h

)
− (µ− 2h) F.

So we have

X1 + (µ− 2h) T 1
2ca

φ(s2)(
2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

)2
TG
2ca

φ(s1) = cs =
X2 + (µ− 2h)

(
T 1

2ca
φ(s1)

)
(

2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

)2
TG
2ca

φ(s2).

(47)

Thus, we have(
X1 + (µ− 2h)

(
T

1
2ca

φ(s2)

))
φ(s1) =

(
X2 + (µ− 2h)

(
T

1
2ca

φ(s1)

))
φ(s2) =⇒ X1φ(s1) = X2φ(s2).

This also implies φ(s1) =
X2
X1

φ(s2). Plugging this back into the FOC for 1 in (47), we get

cs =
X1 + (µ− 2h) T 1

2ca
φ(s2)(

2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

)2
TG
2ca

φ(s1)

=⇒ 2cacs

TG
=

X1 + (µ− 2h) T 1
2ca

φ(s2)(
2σ
λ − 2F + T 1

2ca
φ(s2)

(
X1+X2

X1

))2
X2

X1
φ(s2). (48)

Note that X1 + X2 = (µ− 2h)
( 2σ

λ − 2F
)
. Then

2σ

λ
− 2F + T

1
2ca

φ(s2)

(
X1 + X2

X1

)
=

2σ
λ − 2F

X1

(
X1 + (µ− 2h) T

1
2ca

φ(s2)

)
.
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Therefore, (48) becomes

2cacs

TG
=

X1 + (µ− 2h) t 1
2ca

φ(s2)( 2σ
λ −2F

X1

(
X1 + (µ− 2h) T 1

2ca
φ(s2)

))2
X2

X1
φ(s2)

=
X1X2( 2σ

λ − 2F
)2
(

X1 + (µ− 2h) T 1
2ca

φ(s2)
)φ(s2)

=⇒ X1X2φ(s2) =
2cacs

TG

(
2σ

λ
− 2F

)2 (
X1 + (µ− 2h) T

1
2ca

φ(s2)

)
.

Thus

φ(s2) =
2cacs
TG

( 2σ
λ − 2F

)2 X1

X1X2 − 2cacs
TG

( 2σ
λ − 2F

)2
(µ− 2h) T 1

2ca

=
2cacs

( 2σ
λ − 2F

)
TG (µ− 2h)

× 1
1− 1

( 2σ
λ −2F)(µ−2h)

X1 − 1
X1

( 2σ
λ − 2F

) cs
G

.

This means,

s2 =
1
G

ln
(

1− λX1

2 (σ− λF)
1

µ− 2h
− 2 (σ− λF)

λX1

cs

G

)
+

1
G

ln
TgG (µ− 2h) λ

4cacs (σ− λ)
.

Note that we have

λX1

2 (σ− λA) (µ− 2h)
=

λ
(
σ + 2σ

λ (η1 − h)− (µ− 2h) A
)

2 (σ− λA) (µ− 2h)

=
λσ + 2σ (η1 − h)− σ (η1 + η2 + λ− 2h)

2 (σ− λA) (µ− 2h)
+

1
2

=
σ (η1 − η2)

2 (σ− λA) (µ− 2h)
+

1
2
= N2

So

φ(s2) =
2cacs

( 2σ
λ − 2F

)
TG (µ− 2h)

1
1− 1

( 2σ
λ −2F)(µ−2h)

X1 − 1
X1

( 2σ
λ − 2F

) cs
G

=
2cacs

( 2σ
λ − 2F

)
TG (µ− 2h)

1
1− N2 − 1

N2

cs
G(µ−2h)

. (49)
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and

s2 =
1
G

ln
(

1− N2 −
1

N2

cs

G (µ− 2h)

)
+

1
G

ln
TgG (µ− 2h) λ

4cacs (σ− λF)
. (50)

This is the joint solution to the unconstrained optimization problems for platforms 1 and
2, with a necessary condition for an interior equilibrium (sp ≥ 0 and µ̃p ∈ [ηp, ηp + λ] for both
platforms) if it exists.

Proof of Theorem 2. We continue with the proof of Proposition 3. Recall the FOC of platform
1:

X1 + (µ− 2h) T 1
2ca

φ(s2)(
2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

)2
TG
2ca

φ(s1) = cs

Notice that

µ̃1 − h =
σ + 2σ

λ (η1 − h) + (µ− 2h)
(

T 1
2ca

φ(s2)− A
)

2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

=
X1 + (µ− 2h) T 1

2ca
φ(s2)

2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

so
X1 + (µ− 2h) T 1

2ca
φ(s2)(

2σ
λ − 2F + T 1

2ca
(φ(s1) + φ(s2))

)2 =
(µ̃1 − h)2

X1 + (µ− 2h) B 1
2ca

φ(s2)

So we have

(µ̃1 − h)2 =
2csca

TG
X1 + (µ− 2h) T 1

2ca
φ(s2)

φ(s1)

=
2csca

TG
X1 + (µ− 2h) T 1

2ca

X1
X2

φ(s1)

φ(s1)

=
2csca

TG
X1

(
1

φ(s1)
+ (µ− 2h) B

1
2ca

1
X2

)
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Plug in φ(s1) and cancel out terms to find

(µ̃1 − h)2 =
2csca

TG
X1

(
1

φ(s1)
+ (µ− 2h) T

1
2ca

1
X2

)
=

2csca

TG
X1

(
TG (µ− 2h)

2cacs
( 2σ

λ − 2F
) (1− 1( 2σ

λ − 2F
)
(µ− 2h)

X1 −
1

X1

(
2σ

λ
− 2F

)
cs

G

)
+ (µ− 2h) T

1
2ca

1
X2

)

= X1 (µ− 2h)

(
1

2σ
λ − 2F

(
X1( 2σ

λ − 2F
)
(µ− 2h)

))
=

(
X1

2σ
λ − 2F

)2

.

Then
(
µ̃p − h

)2
=
(

Xp
2σ
λ −2A

)2
for both p. Interior equilibrium also necessitates µ̃p ≥ ηp > h.

So µ̃p − h > 0. Interior equilibrium also necessitates φ(sp) > 0 for both p. We also have
X1φ(s1) = X2φ(s2). So X1 and X2 have the same sign. If both are negative, then µ̃p − h =
−Xp

2σ
λ −2F

. Adding these up over p gives µ− 2h = −X1+X2
2σ
λ −2F

= 2h− µ, which is a contradiction. So
X1, X2 > 0. Then in any interior equilibrium

µ̃1 =
X1

2σ
λ − 2F

+ h =
σ + 2σ

λ (η1 − h)− (µ− 2h) F
2σ
λ − 2F

+ h

=
σ + 2σ

λ η1 − µF
2σ
λ − 2F

=
σ− λF + F (η1 − η2)

2σ
λ − 2F

+ η1

=
1
2

F
σ
λ − F

(η1 − η2) +
λ

2
+ η1

Consequently, we have

µ̃1 =
X1

2σ
λ − 2F

+ h = η1 +
λ

2

(
1 + (η1 − η2)

F
σ− λF

)
, (51)

and for which we provide the conditions under which the equilibrium is interior in Propo-
sition (9).

Proposition 9. The quantities (50) and (51) yield the equilibrium if and only if 1 > Np +
1

Np

cs
G(µ−2h) +(

σ
λ − F

) cs
G(µ−2h)

4ca
Tg for both p, and σ

F − λ ≥ |η1 − η2|.
Assume that there is some h′ > h such that η1, η2 ≥ h′. Then under

cs

G
<

(
µ− 2h

2h′ − 2h
+
(σ

λ
− F

) 4ca

Tg

)−1 (
h′ − h

)
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the equilibrium is interior if and only if σ
F − λ ≥ |η1 − η2|.

Proof of Proposition 9. We have h < η1, η2 so 2h < µ. If 1− Np − 1
Np

cs
G(µ−2h) ≤ 0 for some p,

then (49) can not hold so there is no interior equilibrium. Suppose 1− Np− 1
Np

cs
G(µ−2h) > 0 for

both p. So (49) is positive. In this case, keeping µ̃1, µ̃2 relaxed, an interior s1, s2 is characterized
by (49)≤ F for both p. Notice 1− Np − 1

Np

cs
G(µ−2h) > 0 and (49)≤ F can be jointly written as

2cacs( 2σ
λ −2F)

TG(µ−2h)g < 1− Np − 1
Np

cs
G(µ−2h) .

Given (51), the condition µ̃p ∈ [ηp, ηp + λ] for both p is simply equivalent to σ
F − λ ≥

|η1 − η2|. So the necessary and sufficient conditions for the equilibrium to be interior are (a)
sp and µ̃p given by (50) and (51), (b) 1 > Np +

1
Np

cs
G(µ−2h) +

(
σ
λ − F

) cs
G(µ−2h)

4ca
Tg for both p, and

(c) σ
F − λ ≥ |η1 − η2|.
Take any h′ such that η1, η2 ≥ h′ > h. Let ε = h′−h

µ−2h . Suppose that (c) holds. Wlog let
η1 ≥ η2. Then (c) is σ

F − λ ≥ η1 − η2. Then we have

N1 =
1
2
− σ

2 (σ− λF) (µ− 2h)
(η1 − η2)

=
1
2

(
1− η1 − η2

µ− 2h

(
1 +

1
σ

Fλ − 1

))
>

1
2

(
1− η1 − η2

µ− 2h

(
1 +

1
η1−η2

λ

))

=
1
2

(
1− η1 − η2 + λ

µ− 2h

)
≥ 1

2

(
1− η − 2h′ + λ

µ− 2h

)
= ε

and

N2 =
1
2
− σ

2 (σ− λF) (µ− 2h)
(η2 − η1) >

1
2
> ε

This is, (c) implies [Np > 2ε for both p].
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Note N1 + N2 = 1. If [Np > 2ε for both p], then [Np < 1− 2ε for both p]. Then

Np +
1

Np

cs

G (µ− 2h)
+
(σ

λ
FA
) cs

G (µ− 2h)
4ca

Tg
< 1− 2ε +

1
2ε

cs

G (µ− 2h)
+
(σ

λ
− F

) cs

G (µ− 2h)
4ca

Tg

= 1− 2ε +
cs

G (µ− 2h)

(
1
2ε

+
(σ

λ
− F

) 4ca

Tg

)
< 1− ε ⇐⇒

cs

G
< C ≡

(
1
2ε

+
(σ

λ
− F

) 4ca

Tg

)−1

ε (µ− 2h) .

Thus under cs
G < C, [Np > 2ε for both p] implies (b).

Then, under cs
G < C, (c) implies (b). Therefore, under cs

G < C, the equilibrium is interior if
and only if (c) holds, and the equilibrium quantities are given by (a).

Proof of Proposition 6. Set h′ = f in Proposition 9 and assume

cs

G
< C =

(
1
2ε

+
(σ

λ
− A

) 4ca

Tg

)−1

ε (µ− 2h)

=

(
µ− 2h

2 ( f − h)
+
(σ

λ
− A

) 4ca

Tg

)−1

( f − h)

Then by Proposition 9, the equilibrium is interior if and only if σ
A − λ ≥ |η1 − η2|. Note

σ
A − λ ≥ |η1 − η2| ⇐⇒ µ̃p ∈ [ηp, ηp + λ].

WLOG, let ηt
1 > ηt

2. Note σ
F − λ > ηt+1

1 − ηt+1
2 =⇒ µt+1

1 = µ̃t+1
1 < ηt+1

1 + λt+1 and
σ
F − λ < ηt+1

1 − ηt+1
2 =⇒ µ̃t+1

1 > µt+1
1 = ηt+1

p + λt+1.
Denote ηt

∗p = ηt
p − f , µt

∗p = µt
p − f , µt

∗ = µt − 2 f . Note ηt+1
1 − ηt+1

2 = ηt+1
∗1 − ηt+1

∗2 =

(1− α)
(
µt
∗1 − µt

∗2
)
= (1− α)

(
2µt
∗1 − µ∗

)
= 2 (1− α)

(
µt
∗1 −

µ∗
2

)
.

Lemma 4. If σ
F − λ ≥ 2 (1− α)

∣∣∣µt
∗p −

µ∗
2

∣∣∣, which is equivalent to σ
F − λ ≥ ηt+1

1 − ηt+1
2 , which is
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equivalent to µt+1
1 < ηt+1

1 + λt+1, we have

µt+1
p = ηt+1

p +
λt+1

2

(
1 +

(
ηt+1

p − ηt+1
p′

) F
σ− λt+1F

)
= (1− α) µt

∗p + f +
αµ∗

2

(
1 + (1− α)

(
µt
∗p − µt

∗p′

) F
σ− αµ∗F

)
µt+1
∗p = (1− α) µt

∗p +
αµ∗

2

(
1 + (1− α)

(
µt
∗p − µt

∗p′

) F
σ− αµ∗F

)
= (1− α) µt

∗p +
αµ∗

2

(
1 + (1− α)

(
2µt
∗p − µ∗

) F
σ− αµ∗F

)
= (1− α) µt

∗p

(
1 +

αµ∗
2

2
F

σ− αµ∗F

)
+

αµ∗
2

(
1− (1− α) µ∗

F
σ− αµ∗F

)
= µt

∗p
(1− α) σ

σ− αµ∗F
+

αµ∗
2

(
σ− µ∗F

σ− αµ∗F

)
µt+1
∗p −

µ∗
2

= µt
∗p

(1− α) σ

σ− αµ∗F
+

αµ∗
2

(
σ− µ∗F

σ− αµ∗F

)
− µ∗

2

=
(1− α) σ

σ− αµ∗F

(
µt
∗p −

µ∗
2

)
= R

(
µt
∗p −

µ∗
2

)
Lemma 5. If σ

F − λ < 2 (1− α)
∣∣∣µt
∗p −

µ∗
2

∣∣∣, which is equivalent to σ
F − λ > ηt+1

1 − ηt+1
2 , which is

equivalent to µt+1
1 = ηt+1

1 + λt+1, we have

µt+1
2 = ηt+1

2 = (1− α) µt
∗2 + f

µt+1
∗2 = (1− α) µt

∗2

Using these lemmas, we analyze four cases.
Case 1: σ

F − λ ≥ 2 (1− α)
∣∣∣µ0
∗p −

µ∗
2

∣∣∣ and σ > µ∗F. In this case, by Lemma 4, equilibrium
starts and remains interior

µt
∗p =

µ∗
2

+ Rt
(

µ0
∗p −

µ∗
2

)
=⇒ µt

p =
µ

2
+ Rt

(
µ0

p −
µ

2

)
Case 2: σ

F − λ ≥ 2 (1− α)
∣∣∣µ0
∗p −

µ∗
2

∣∣∣ and σ < µ∗F. In this case, by Lemma 4 equilibrium
starts and remains interior until∣∣∣µt

∗p −
µ∗
2

∣∣∣ = (1− α
σ− µ∗F

σ− αµ∗F

)t ∣∣∣µ0
p −

µ∗
2

∣∣∣ > σ
F − λ

2 (1− α)

for the first time. This happens at t by definition of t. After this point t, equilibrium turns to
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and remains corner with µt′+t
∗2 = (1− α)t′ µt

∗2. Thus

µt′+t
2 = f + (1− α)t′

(
µt

2 − f
)
= f + (1− α)t′

(µ∗
2

+ Rt
(

µ0
∗2 −

µ∗
2

)
− f

)
= f + (1− α)t′

(µ

2
− Rt

(µ

2
− µ0

2

))
Case 3: σ

F −λ < 2 (1− α)
∣∣∣µ0
∗p −

µ∗
2

∣∣∣. In this case, the equilibrium starts and remains corner

and µt
∗2 = (1− α)t µ0

∗2. So
µt

2 = f + (1− α)t (µ0
2 − f

)
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