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Abstract

The January 2022 spike in COVID-19 infection rates in the U.S. was three times higher than

the December 2020 spike despite widespread vaccination by January 2022 and minimal vaccination in

December 2020. Moreover, infection rates continued to rise throughout 2021 even as vaccine distribution

expanded and coverage increased. To explore this paradox, we develop a model in which agents choose

their socialization patterns in the presence of an infectious disease and an imperfectly effective protective

measure. As the protective measure becomes more effective or more widely adopted, up to a threshold,

infection rates increase due higher socialization rates, despite higher effectiveness and adoption rate

of the protective measure. Superspreader agents such as individuals at central points of interest (e.g.,

schools, gyms, grocery stores) or those in highly connected roles (e.g., teachers, trainers, cashiers)

facilitate the transmissions. We provide supporting evidence using U.S. foot traffic data (2021–2022)

and historical COVID-19 vaccination and community transmission rates.

1 Introduction

The outbreak of COVID-19 has had a profound impact on global health and economy. Caused by the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus was first identified in Wuhan,

China, in December 2019 and quickly escalated into a global pandemic. The World Health Organization

(WHO) declared COVID-19 a Public Health Emergency of International Concern in January 2020 and

a pandemic in March 2020. As of 2022, the virus had infected over 600 million people and caused more

than 6 million deaths worldwide.1 The rapid spread of COVID-19, along with mixed public responses

to recommended protective measures, underscored the need for improved preparedness. In particular,
∗We thank Joanna Tan for excellent research assistance.
†Carnegie Mellon University (e-mail: erenceldir@gmail.com)
‡Carnegie Mellon University (e-mail: erol@cmu.edu)
1See https://covid19.who.int/ for WHO Coronavirus (COVID-19) Dashboard.

1



behavioral factors remain underexplored in the context of COVID-19 transmission and may play a crucial

role in shaping strategies to manage public health crises (Gupta et al. (2022)).2

We investigate superspreaders during pandemics and the behavioral mechanisms that contribute to

their emergence. Figure 1 presents the number of new COVID-19 cases in the U.S. since the onset of the

pandemic. Two notable peaks in infection rates are observed: the first around December 2020 when the

national vaccination rate was around 2%, and the second in January 2022, when the vaccination coverage

had reached approximately 70%. The number of new COVID-19 cases during the second peak in January

2022 was three times higher than during the first peak, despite the widespread rollout of vaccines in the

intervening period. Omicron variant , which was the dominant variant causing infections in early 2022

has a higher transmissibility compared to the earlier variants (Andre et al. (2023)) which contributes to

the discrepancy. Nevertheless, the steady rise in infections throughout 2021 occurred before the variant

emerged. Although vaccination and sustained preventive measures were shown to be effective in limiting

transmission of the original virus (Davies et al. (2021); Markov et al. (2023)), infection rates continued

to increase prior to the emergence of the Omicron variant.

Our theory examines how unregulated levels of social activity respond to the widespread availability

and effectiveness of preventive measures. While vaccines are a critical tool in controlling the spread of

COVID-19, it is important to recognize that they do not fully eliminate the risk of transmission (Polack

et al. (2020)). As vaccination rates increase, individuals may feel more comfortable engaging in high-risk

settings—such as restaurants, schools, gyms, and grocery stores, or family gatherings—thereby increasing

overall social activity (Usherwood et al. (2021)). The rise in visitors and activity levels can elevate viral

loads in enclosed spaces beyond thresholds conducive to infection (Henriques et al. (2021)). Moreover,

individuals working in these central locations—such as waiters, teachers, trainers, and cashiers—can

become infected and unknowingly spread the virus during their asymptomatic phase to a large number

of others.

In our model, we represent a central location or individual as a central node in a network, and allow

agents to choose to connect with the center to obtain certain benefits against the risk of costly infection.

We show that a form of network hazard (Erol (2019)) arises. Although higher availability and effectiveness

of protective measure, such as vaccines, are expected to reduce infection rates, this effect can be offset in

the aggregate via agents’ increased contact with the center. When the viral load in the central location is

high enough or the central individual gets infected, spikes in infection rates occur despite more effective
2Some examples of behavioral factors include how individuals interpret and respond to public health messages, how social

norms and cultural practices shape behavior, or how economic and political factors influence the implementation of control
measures (Berg and Lin (2020)).
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Figure 1: COVID-19 Infection Rate vs. Vaccination Rate in the U.S.

Notes. New cases per 100,000,000 persons in the past 7 days is calculated by adding the number of new
cases in the last 7 days divided by the U.S. population and multiplying by 100,000,000. Vaccination Rate (%)
represents the percent of people who have completed a primary series (have second dose of a two-dose vaccine or
one dose of a single-dose vaccine).
Vaccination rates are by definition increasing over time. The drop at the end of 2021 can be attributed to minor
data reporting errors.

individual protective measures. In addition to raising overall infection rates, the correlated nature of

these infections—transmitted through central agents—can lead to disproportionately large clusters of

simultaneous cases. These superspreader events are critical to understand in light of the limited hospital

capacity and ventilators.

We empirically validate the testable predictions of our theory using monthly time-series data of aggre-

gate foot traffic in 2021, obtained from the geospatial data provider SafeGraph. This foot traffic data is

merged with publicly available datasets from the Centers for Disease Control and Prevention (CDC) on

COVID-19 vaccination rates and community transmission rates, matched by time and geographic region.

Our analysis reveals that in states where vaccination rates increased gradually over several months, as

vaccination rates increase, both overall foot traffic and community infection rates rise concurrently. More

importantly, infection rates are increasing in both vaccination rates and the residual of the foot traffic,

confirming that the net effect of the vaccination rate is to increase infection rates in these locations.

Finally, we demonstrate the robustness of our analysis by controlling for the phased removal of social

restrictions (e.g., stay-at-home orders, occupancy limits in enclosed spaces) within our analysis window.
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2 Related Literature

The transmission of COVID-19 in enclosed environments—such as households and workplaces—and the

effectiveness of preventive measures, including mask usage, social distancing and ventilation, have been

extensively studied across disciplines such as epidemiology, mathematics, and physics.3Abo and Smith

(2020), for example, compare the efficacy of various interventions, including physical distancing and vac-

cination. However, this body of work largely overlooks the endogenous behavioral responses of individuals

to these measures. We draw on this literature to specify functional forms in our model.

The impact of COVID-19 on retail operations, supply chain management, and public health policy

design has been a focus of study within the operations research community. Delasay et al. (2022) and

Shumsky et al. (2021) examine how social distancing and other preventive measures affect consumer

behavior and foot traffic patterns.4 Additionally, research has contributed to public health policy by

developing models for infection control strategy design (Kaplan (2020)), forecasting localized outbreaks

(Chang and Kaplan (2023)), and assessing transmission risks within service environments (Kang et al.

(2022)).

While early research on COVID-19 focused primarily on the mechanics of transmission, the urgent

need to incorporate human behavior and social dynamics into mathematical epidemiological models has

given rise to a growing body of literature. El Ouardighi et al. (2022) examine how public discontent and

social fatigue influence policymakers’ non-therapeutic interventions—such as mobility restrictions and

the regulation of social interactions—during a pandemic. Wu (2021) models individuals’ social distancing

decisions as a social dilemma game played against the broader population. Usherwood et al. (2021) forecast

COVID-19 trends in the U.S. accounting for population-level caution and perceived safety, which increase

as more individuals become vaccinated (Liu and Wu (2022)). In economics, several studies—Kaplan et

al. (2020), Acemoglu et al. (2021), Fernández-Villaverde and Jones (2022)—embed policy analysis within

detailed SIR models, incorporating the expected arrival time of a vaccine.

Our work contributes to this literature along two dimensions. First, we incorporate agents’ endoge-

nous socialization decisions in response to vaccine availability and efficacy into both our theoretical and
3See Buonanno et al. (2020), Bazant et al. (2021), Bazant and Bush (2021), Henriques et al. (2021), Ooi et al. (2021),

Salmenjoki et al. (2021), Shang et al. (2022). These works emphasize the importance of limiting cumulative exposure time
which is the product of the number of occupants and their time in an enclosed space. This quantity depends on the type
of respiratory activity (e.g., singing, talking, etc.) and the infectiousness of the respiratory aerosols, and it increases as the
rate of ventilation, air filtration, size of the room and face mask use increase. Kapoor et al. (2022) estimate the transmission
probability of COVID-19 in enclosed spaces using an artificial neural network with real-time collected data.

4On the supply chain front, Han et al. (2022) investigate the impact of the pandemic on e-commerce operations, Khan et
al. (2021) discuss its impact on medical supply chains, Mak et al. (2022) model and analyze two-dose vaccine distribution,
Nikolopoulos et al. (2021) provide predictive analytics tools for forecasting and planning during a pandemic.
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empirical analysis. Second, we introduce the concept of network hazard—originally developed in the con-

text of financial networks—to the epidemiological literature, offering a novel perspective on the dynamics

of superspreaders.

We utilize foot traffic data derived from anonymized cell phone records provided by SafeGraph. Prior

studies have explored the determinants of foot traffic patterns during the pandemic. For example, Cronin

and Evans (2020) investigate the effects of state and local restrictions on mobility across essential (e.g.,

retail) and nonessential (e.g., entertainment) industries. Goolsbee and Syverson (2021) assess the extent

to which declines in economic activity were driven by formal government-imposed restrictions versus

voluntary behavioral responses aimed at avoiding infection. Our primary focus is on the post-vaccine

period, specifically the recovery of foot traffic following the widespread availability of COVID-19 vaccines.

The rest of the paper is organized as follows. In Section 3, we present our network model and analysis.

We describe our data and empirical validations in Section 4 and conclude in Section 5.

3 Model

There is a unit mass of agents and one center. Each agent can choose to connect with the center to obtain

some benefits. Agents who connect with the center are called connected agents. The center accepts all

connections. The center can be a person or a group of people either with high value from connections or

with a commitment to meet all demand from the connections. Examples are teachers in schools, doctors

in hospitals, cashiers in grocery stores, trainers in gyms, etc. The center can also be the physical space

where people gather such as schools, hospitals, grocery stores, gyms, bars and restaurants, etc.

There is an infectious disease. Agents can contact the disease and get infected. The contacts can

happen exogenously, called external contact, at a given rate. The corresponding infections are called

external infections. Agents who have not contacted the disease externally can still contact the disease

if they are connected and some internally infected agents are also connected. Such contact is called

internal contact and the corresponding infections are internal infections.5 When the center is a person,

infected connected agents infect the center, who can then create contact to other connected agents. When

the center is a physical space, the mass of infected connected agents determine the viral density in the
5Note that agents who contacted the disease externally but did not get infected is assumed to not get infected internally.

For example, an agent who contacted the virus exogenously but did not get infected builds immunity and does not get
infected out of endogenous contact either. Alternatively, all interactions happen repeatedly in a short timespan wherein
infected agents are asymptomatic and agents’ infection statuses are determined nearly simultaneously with their contact
statuses. Since such agents do not get infected internally, we assume without loss of generality that they do not contact the
disease externally either.
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air at the center, which determines the contact probability of other connected agents (Henriques et al.

(2021)). Overall, the mass of connected infected agents increase the internal contact probability. There

is also a protective measure against infections, such as a vaccine, which we simply call protection.6 Using

protection decreases the infection probability by a factor. We call an agent protected if the agent uses

protection.

Formally, connecting to the center grants value v < 1 to each connected agent. If an agent is infected,

it incurs cost 1. Each agent has an exogenous contact probability κ. Denoting χ the (endogenous) mass

of connected infected agents, a connected agent who has not been contacted exogenously has probability

Φ(χ) of contacting the virus endogenously, where Φ is an increasing function. An agent who contacts the

virus gets infected with probability ι, which is scaled down by e < 1 if the agent is protected, down to eι.

We call e−1 is the efficacy of protection. For simplicity we take ι = 1.

We denote p the mass of protected agents. Using protection can be a choice or it can be mandated

depending on the specific case at hand. We take p to be exogenous and assume that each agent has p

probability of being protected. This way, we aim to capture the gradual availability of vaccines in the

US during the COVID-19 pandemic. Agents know their protection status when making their connec-

tion choice, but contact and infections are unobservable. This is, the interactions happen during the

asymptomatic interval of the disease.

Equilibrium Agents, when making their connection decisions, compare the value of the connection

to the center with the internal contact probability and the cost of associated potential infection. In

particular, a protected agent compares v and e(1 − κ)Φ(χ) whereas an unprotected agent compares v

and (1 − κ)Φ(χ). This implies that protected agents have higher expected value from connecting. Then,

infection probabilities are given by the following table.

not connected connected

protected eκ e (κ + (1 − κ)Φ(χ))

not protected κ κ + (1 − κ)Φ(χ)

The mass of agents who get infected through external contact is θ ≡ (pe + 1 − p) κ. Denote µp ≤ p

the endogenous mass of connected protected agents and µu ≤ 1 − p the endogenous mass of connected

unprotected agents. The following cases characterize equilibria.
6The model can be generalized to include masks in case of airborne diseases. In case of STIs protection can also be

condoms.
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1. No agent is connected: µp = µu = 0. This case is characterized by χ = 0, e(1 − κ)Φ(χ) ≥ v. This

is, even the protected agents prefer not to connect even if no other agent is connected. In this case,

the mass of internal infections is zero as there are no connections.

2. Some protected agents are connected, no unprotected agents are connected: µp ∈ (0, p), µu = 0.

This case is characterized by χ = µpeκ, e(1 − κ)Φ(χ) = v. This is, protected agents connect to the

center up to the point of being indifferent, at which point unprotected agents prefer not to connect.

In this case, the mass of endogenously infected agents is µp(1 − κ)eΦ(χ). Denoting Ψ(x) ≡ xΦ(x),

which is strictly increasing, the mass is given by µp(1 − κ)eΦ(χ) = 1−κ
κ Ψ(χ) = 1−κ

κ Ψ(Φ−1( v
e(1−κ))).

The mass of internal infections is constant in p, as the marginal connected agent has fixed internal

infection probability. More importantly, internal infections are increasing in e−1. This is, for more

effective protection, there is more internal infections. This is an instance of network hazard. Agents

do not internalize the infection probability and comfortably connect more when protection is better.

In equilibrium, total infections increase.

3. All protected agents are connected, no unprotected agents are connected: µp = p, µu = 0. This case

is characterized by χ = eκp, (1−κ)Φ(χ) ≥ v ≥ e(1−κ)Φ(χ). This is, protected agents connect to the

center up to the point of being indifferent, at which point unprotected agents prefer not to connect.

In this case, the mass of endogenously infected agents is p(1 − κ)eΦ(χ) = 1−κ
κ Ψ(χ) = 1−κ

κ Ψ (epκ).

The mass of internal infections is decreasing in e−1, but, importantly, increasing in p. This is, for

more widespread protection, there is more internal infections. This is also an instance of network

hazard. When protection is good enough that protected agents prefer to connect, if protection gets

more widespread, the mass of connected agents increase, increasing the mass of internal infections.

4. All protected agents are connected, some unprotected agents are connected: µp = p, µu ∈ (0, 1 − p).

This case is characterized by χ = eκp+κµc, v = (1−κ)Φ(χ). This is, unprotected agents connect to

the center up to the point of being indifferent, at which point protected agents prefer to connect. In

this case, the mass of endogenously infected agents is p(1 − κ)eΦ(χ) + µc(1 − κ)Φ(χ) = 1−κ
κ Ψ(χ) =

1−κ
κ Ψ(Φ−1( v

1−κ)).

This is constant in both p and e−1. The marginal connected agent is unprotected; hence, neither

the extent of protection in the society, p, nor the efficacy of protection, e, matters for the infection

probability of the marginal agents.

5. All agents are connected: µp = p, µu = 1 − p. This case is characterized by χ = peκ + (1 − p)κ = θ,
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v ≥ (1 − κ)Φ(χ). This is, even the unprotected agents prefer to connect despite all agents being

connected. In this case, the mass of endogenously infected agents is p(1 − κ)eΦ(χ) + (1 − p)(1 −

κ)Φ(χ) = 1−κ
κ Ψ (χ) = 1−κ

κ Ψ (θ).

As θ is is decreasing in both p and e−1, so is the mass of internally infected agents .

Note that internal infections are given by 1−κ
κ Ψ (χ) which is isomorphic to χ. We summarize these cases

in the following table of connected external infections χ.

Case Parametric case Connected external inf. χ Network hazard

1 e(1 − κ)Φ(0) ≥ v 0

2 e(1 − κ)Φ(eκp) > v > e(1 − κ)Φ(0) Φ−1
(

v
e(1−κ)

)
Increasing in e−1

3 (1 − κ)Φ(eκp) ≥ v ≥ e(1 − κ)Φ(eκp) peκ Increasing in p

4 (1 − κ)Φ(κ(ep + 1 − p)) > v > (1 − κ)Φ(eκp) Φ−1
(

v
1−κ

)
5 v ≥ (1 − κ)Φ(κ(ep + 1 − p)) κ(ep + 1 − p)

These cases are parametrically exhaustive hence characterize the equilibrium. For a fixed p, starting with

e = 1, meaning a completely ineffective protection, and gradually increasing the efficacy e−1, we see that

internal infections start increasing after the cutoff e−1 = (1−κ)Φ(0)
v between case 1 and case 2. During

the phase of case 2, more protected agents connect as a function of the efficacy of protection. At the

cutoff e−1 = κpΨ−1( vκp
1−κ)−1 between case 2 and case 3, all protected agents are connected and further

improvements in efficacy decreases internal infections. This is portrayed in Figure 2a.

Notice the dilemma here. As long as protected agents are not fully connected (case 2), the efficacy

of protection increases internal infections. This is network hazard. Only after all protected agents are

connected, the efficacy of protection starts reducing internal infections (case 3). However, when all

protected agents and some unprotected agents are connected (case 4), the efficacy of protection does not

affect internal infections. Therefore, network hazard hurts connected protected agents (case 2) but not the

connected unprotected agents (case 4) although, in some sense, better protection is supposed to benefit

protected agents compared to unprotected agents.

Next, consider a fixed e−1. As we start with p = 0 meaning no availability of protection, and

gradually increase p, we see that internal infections start increasing after the cutoff p = 1
eκΦ−1( v

e(1−κ))

between case 2 and case 3. During the phase of case 3, all protected agents choose to be connected and

no unprotected agents do so. In some sense, a protected population who are all exposed to each other

through their connection to the center is being scaled up, and so the internal infections increase. At the

cutoff p = 1
eκΦ−1( v

1−κ) between case 3 and case 4, some unprotected agents finally find it optimal to
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Figure 2: Internal and Total Infections in Efficacy of Protection
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Figure 2b: Total Infections

Notes. The parameter values are v = 0.1, κ = 0.1, α = 50, p = 0.5.

connect, and the mass of unprotected agents further increases in protection availability. The marginal

unprotected agent has constant probability of internal infection so the internal infections are constant

after this point. This is portrayed in Figure 3a.

A similar dilemma appears here. Whenever there is non-trivial rates of internal infection across

protected agents, larger availability of protection increases the mass of internal infections. Only after

protection rate is big enough that it becomes optimal for all protected agents to connect and unprotected

agents start connecting, the internal infection rate stops increasing. Therefore, larger availability of

protection hurts the protected population due to externalities, which is another instance of network

hazard.

Finally, note the complementarity between e−1 and p. The network hazard region for e−1, i.e., case 2, is

between (1−κ)Φ(0)
v and κpΨ−1( vκp

1−κ)−1 which is wider for larger p. This is, if protection is more widespread,

the adverse consequences of a more effective protection is more prevalent. Similarly, the network hazard

region for p, i.e., case 3, is between 1
eκΦ−1( v

e(1−κ)) and 1
eκΦ−1( v

1−κ). If the protection is more effective,

the adverse consequences of more widespread protection manifests during higher availability.

The total mass of infections, τ ≡ θ + 1−κ
κ Ψ(χ), is of interest as well. After all, higher efficacy e−1

and more availability p reduces external infections θ. Comparative statics in this case requires specifying

a form for the transmission function Φ to pin down tradeoffs between internal and external infections.

Referring to Henriques et al. (2021), Φ is described by Φ(χ) = 1 − e−αχ where α > 0 is a constant that

depends on a host of exogenous factors.

The adverse consequences of increased p and e−1 on internal infections appear for e−1 in case 2 and

for p in case 3. In the other cases, internal infections are decreasing in e−1 and p, so the total infections

also decrease. Therefore, we focus on e−1 in case 2 and p in case 3 to study total infections. Case 2 is
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Figure 3: Internal and Total Infections in Availability of Protection
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Notes. The parameter values are v = 0.1, κ = 0.1, α = 50, 1 − e = 0.85.

given by eκp > χ = −α−1 ln
(
1 − v

e(1−κ)

)
and some algebra yields

dτ

de−1 = −κpe2 + v

ακ

(
v

e(1 − κ) − v
+ χα

)

Notice that p can be as small as χ
eκ under case 2 so dτ

de−1 can be as large as χ
(

v
α − e

)
+ v2

ακ(e(1−κ)−v) . Thus,

for relatively large e−1, in particular v > αe,7 we have dτ
de−1 > 0. This is, the total infections can increase

as protection efficacy e−1 increases, particularly if protection is not too widespread and but it is highly

effective. This is portrayed in Figure 2b.

Next, consider p in case 3. Case 3 is given by v
e(1−κ) > Φ(χ) = Φ(eκp) > v

1−κ , and some algebra yields

dτ

dp
= (1 − κ)eΦ(eκp) − κ(1 − e) + (1 − κ)κe2pΦ′ (eκp)

Similarly, p can be chosen to make Φ(eκp) arbitrarily close to v
e(1−κ) , in which case v can be chosen

arbitrarily large. In this case, dτ
dp > v − κ(1 − e) which is positive. Hence, the total infections can increase

as protection availability p increases, particularly when protection is already widespread and value of

connections is large. This case is particularly relevant to our empirical analysis as we discuss in the next

section. This is portrayed in Figure 3b.

In summary, our analysis indicates that there are two cases of network hazard. First, when some

protected individuals are connected but unprotected individuals are not connected with the center, the

efficacy of protection increases the endogenous infection probability in the network because more pro-

tected individuals decide to form connections with the center. This increases the number of internal
7This does not contradict parametric specification of case 2.
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infections through the center due to negative externalities. The total number of infections, including both

internal and external, might increase when the protection is highly effective but not widespread. Second,

when all protected individuals are connected but unprotected individuals are not connected, the efficacy

of protection decreases the infection probability expectedly. However, the availability of protective mea-

sures increases the infection probability because more protected individuals prefer to connect when the

protection is good enough, which in turn, increases the internal infections. Similarly, the total number

of infections might increase when protection is already widespread which we observe in our empirical

analysis. Only after the efficacy and the availability of protection are sufficiently large that all protected

individuals connect, the internal infections decrease because the marginal connected agents’ infection

probability does not depend on protection efficacy.

4 Data and Empirical Analysis

We construct a monthly, state-level panel dataset of visits to various categories of businesses using

anonymized cell phone location data from the geospatial analytics company SafeGraph. Couture et

al. (2022) demonstrate that smartphone-based mobility data capture a substantial share of the U.S. pop-

ulation and are broadly representative in terms of residential demographics and movement behavior. The

points of interest in our analysis include restaurants, gas stations, large retail stores, grocery stores, coffee

shops, gyms, and airports. Our panel dataset spans the period from January 2021—when the general

public began receiving COVID-19 vaccines—through December 2021, by which time the majority of the

population in all states had been vaccinated (see Figure 4). The data after December 2021 is excluded

as infection rates surged after December 2021 with the emergence of the Omicron variant. Therefore,

our empirical results are robust to the emergence of the Omicron variant. Moreover, our insights propose

an additional cautionary tale regarding mutations. As vaccination rates rise, social activity increases,

thereby elevating the risk of significant spikes in infections in the event that a new mutation emerges.

To validate our theoretical predictions, we focus on a subset of states characterized by steadily increas-

ing vaccination rates throughout this period. We exclude states where vaccination rates surged rapidly

following the initial rollout in December 2020 but plateaued by February or March 2021. The selected

states vary in population size, geography, and climate, ensuring a statistically representative sample and

supporting the robustness of our findings. Additionally, we incorporate publicly available COVID-19

data from the Centers for Disease Control and Prevention (CDC), including vaccination coverage8 and
8Data available at https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh
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Figure 4: Vaccination Rates of All States

Notes. Gray lines represent states where vaccination rates rose quickly and then leveled off. These states are
excluded from our analysis because their vaccination patterns lack sufficient variation over time. Similar to Figure
1, the CDC vaccination data show declines in reported vaccination rates for certain states, which can be attributed
to data reporting errors.

community transmission rates9, matched by time and geographic location.
Our first set of regressions (Regression 1) is designed to validate the assumption that increased foot

traffic—i.e., the mass of connected agents, χ, at central locations—leads to higher infection rates, such

that Φ(χ) is an increasing function of χ. Given that the asymptomatic incubation period of COVID-19

can extend up to 10-14 days Alene et al. (2021), we use the moving average of visits to these central

locations over the current and the previous month, t and t − 1, as the independent variable. As shown

in Table 1, the coefficient of visits to central locations is positive and statistically significant, providing

empirical support for our hypothesis that greater social activity is associated with increased COVID-19

transmission.

Our second set of regressions (Regression 2) tests the assumption underlying the mechanism behind

Case 3: as the vaccination rate, p, increases, a greater number of vaccinated individuals choose to visit
9Data available at https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-County-Level-of-

Community-T/nra9-vzzn
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Table 1: Foot traffic on infection rate regressions (Regression 1)

(a) CO

infection rate(t)

constant -0.005
(0.006)

visits MA(t, t − 1) 0.127∗∗∗

(0.031)

Observations 12
R2 0.629
Adjusted R2 0.592
Residual Std. Error 0.001 (df=10)
F Statistic 16.966∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) GA

infection rate(t)

constant -0.002
(0.002)

visits MA(t, t − 1) 0.026∗∗∗

(0.005)

Observations 12
R2 0.745
Adjusted R2 0.720
Residual Std. Error 0.001 (df=10)
F Statistic 29.238∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(c) NE

infection rate(t)

constant -0.018
(0.013)

visits MA(t, t − 1) 0.226∗∗∗

(0.040)

Observations 12
R2 0.762
Adjusted R2 0.738
Residual Std. Error 0.003 (df=10)
F Statistic 32.054∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(d) NH

infection rate(t)

constant -0.061∗∗

(0.026)
visits MA(t, t − 1) 5.644∗∗∗

(1.078)

Observations 12
R2 0.733
Adjusted R2 0.706
Residual Std. Error 0.005 (df=10)
F Statistic 27.423∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(e) NM

infection rate(t)

constant 0.007
(0.010)

visits MA(t, t − 1) 0.310∗∗∗

(0.075)

Observations 12
R2 0.634
Adjusted R2 0.597
Residual Std. Error 0.004 (df=10)
F Statistic 17.293∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(f) SD

infection rate(t)

constant -0.055
(0.035)

visits MA(t, t − 1) 1.027∗∗∗

(0.206)

Observations 12
R2 0.713
Adjusted R2 0.685
Residual Std. Error 0.008 (df=10)
F Statistic 24.876∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(g) VA

infection rate(t)

constant -0.003
(0.003)

visits MA(t, t − 1) 0.052∗∗∗

(0.009)

Observations 12
R2 0.762
Adjusted R2 0.738
Residual Std. Error 0.001 (df=10)
F Statistic 31.960∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(h) WV

infection rate(t)

constant -0.016
(0.012)

visits MA(t, t − 1) 0.450∗∗∗

(0.070)

Observations 12
R2 0.803
Adjusted R2 0.784
Residual Std. Error 0.003 (df=10)
F Statistic 40.876∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes. Infection rate (t) is calculated as the number of reported new infections in each state divided by that state’s
population. Visits MA(t, t − 1) is calculated as the moving average of foot traffic to central locations in periods t
and t − 1 divided by 100,000,000 for normalization. t ranges from January 2021 to December 2021.

central locations. We use the vaccination rate in period t − 1 as the independent variable, based on

the premise that the increased availability of vaccines is most likely to influence the behavior of newly

vaccinated individuals during the current and subsequent periods (t − 1 and t, respectively). As shown

in Table 2, the coefficient of the vaccination rate is positive and statistically significant, confirming our

hypothesis that higher vaccination coverage is associated with increased social activity in central locations.

Building on the results of Regression 2, which confirm that vaccinated individuals are more likely to

visit central locations as the vaccination rate increases, our third set of regressions (Regression 3) tests

the prediction in Case 3: that this behavioral response leads to increased internal infections via central

nodes, i.e., χ = peκ. As a result, total infections rise as the vaccination rate increases. Consistent with

the specification in Regression 2, we use the vaccination rate in period t − 1 as the independent variable.

Table 3 shows that the coefficient of the vaccination rate is positive and statistically significant, providing

empirical validation for our theoretical prediction that increased vaccination can, paradoxically, contribute

to higher infection rates through individuals’ behavioral response.

The first three sets of regressions provide empirical support for the main theoretical predictions of

our model. To check the robustness of our results, we compute the residual component of foot traffic
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Table 2: Vaccination rate on foot traffic regressions (Regression 2)

(a) State: CO

visits MA(t, t − 1)

constant 0.165∗∗∗

(0.005)
vac (t − 1) 0.296∗∗∗

(0.060)

Observations 12
R2 0.710
Adjusted R2 0.681
Residual Std. Error 0.007 (df=10)
F Statistic 24.446∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) State: GA

visits MA(t, t − 1)

constant 0.397∗∗∗

(0.020)
vac (t − 1) 1.560∗∗∗

(0.409)

Observations 12
R2 0.592
Adjusted R2 0.551
Residual Std. Error 0.026 (df=10)
F Statistic 14.522∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(c) State: NE

visits MA(t, t − 1)

constant 0.278∗∗∗

(0.010)
vac (t − 1) 0.618∗∗∗

(0.126)

Observations 12
R2 0.707
Adjusted R2 0.678
Residual Std. Error 0.014 (df=10)
F Statistic 24.121∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(d) State: NH

visits MA(t, t − 1)

constant 0.023∗∗∗

(0.001)
vac (t − 1) 0.029∗∗∗

(0.008)

Observations 12
R2 0.583
Adjusted R2 0.542
Residual Std. Error 0.001 (df=10)
F Statistic 14.001∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(e) State: NM

visits MA(t, t − 1)

constant 0.115∗∗∗

(0.003)
vac (t − 1) 0.394∗∗∗

(0.041)

Observations 12
R2 0.901
Adjusted R2 0.891
Residual Std. Error 0.005 (df=10)
F Statistic 91.092∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(f) State: SD

visits MA(t, t − 1)

constant 0.152∗∗∗

(0.004)
vac (t − 1) 0.277∗∗∗

(0.060)

Observations 12
R2 0.680
Adjusted R2 0.648
Residual Std. Error 0.007 (df=10)
F Statistic 21.241∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(g) State: VA

visits MA(t, t − 1)

constant 0.258∗∗∗

(0.010)
vac (t − 1) 0.797∗∗∗

(0.186)

Observations 12
R2 0.648
Adjusted R2 0.613
Residual Std. Error 0.015 (df=10)
F Statistic 18.413∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(h) State: WV

visits MA(t, t − 1)

constant 0.144∗∗∗

(0.010)
vac (t − 1) 0.459∗∗

(0.187)

Observations 12
R2 0.376
Adjusted R2 0.314
Residual Std. Error 0.011 (df=10)
F Statistic 6.030∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes. Visits MA(t, t − 1) is discussed in Table 1. Vac (t − 1) is calculated as the cumulative number of people in
each state received vaccination by period (t − 1) divided by that state’s population.

Table 3: Vaccination rate on infection rate regressions (Regression 3)

(a) CO

infection rate(t)

constant 0.015∗∗∗

(0.001)
vac (t − 1) 0.050∗∗∗

(0.008)

Observations 12
R2 0.775
Adjusted R2 0.753
Residual Std. Error 0.001 (df=10)
F Statistic 34.517∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) State: GA

infection rate(t)

constant 0.008∗∗∗

(0.001)
vac (t − 1) 0.048∗∗∗

(0.011)

Observations 12
R2 0.644
Adjusted R2 0.609
Residual Std. Error 0.001 (df=10)
F Statistic 18.127∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(c) State: NE

infection rate(t)

constant 0.044∗∗∗

(0.003)
vac (t − 1) 0.154∗∗∗

(0.0036)

Observations 12
R2 0.652
Adjusted R2 0.617
Residual Std. Error 0.004 (df=10)
F Statistic 18.716∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(d) State: NH

infection rate(t)

constant 0.063∗∗∗

(0.003)
vac (t − 1) 0.206∗∗∗

(0.043)

Observations 12
R2 0.701
Adjusted R2 0.671
Residual Std. Error 0.005 (df=10)
F Statistic 23.433∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(e) State: NM

infection rate(t)

constant 0.042∗∗∗

(0.002)
vac (t − 1) 0.141∗∗∗

(0.025)

Observations 12
R2 0.757
Adjusted R2 0.733
Residual Std. Error 0.003 (df=10)
F Statistic 31.195∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(f) State: SD

infection rate(t)

constant 0.096∗∗∗

(0.005)
vac (t − 1) 0.355∗∗∗

(0.064)

Observations 12
R2 0.753
Adjusted R2 0.728
Residual Std. Error 0.007 (df=10)
F Statistic 30.452∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(g) State: VA

infection rate(t)

constant 0.010∗∗∗

(0.000)
vac (t − 1) 0.055∗∗∗

(0.007)

Observations 12
R2 0.874
Adjusted R2 0.861
Residual Std. Error 0.001 (df=10)
F Statistic 69.129∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(h) State: WV

infection rate(t)

constant 0.045∗∗∗

(0.004)
vac (t − 1) 0.283∗∗∗

(0.078)

Observations 12
R2 0.569
Adjusted R2 0.526
Residual Std. Error 0.005 (df=10)
F Statistic 13.214∗∗∗ (df=1; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes. Infection rate(t) is discussed in Table 1. Vac (t − 1) is discussed in Table 2.
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Table 4: Vaccination rate and variation in foot traffic on infection rate regressions (Regression 4)

(a) State: CO

infection rate(t)

constant 0.010
(0.008)

vac (t − 1) 0.041∗∗

(0.016)
variation visits MA(t, t − 1) 0.096

(0.155)

Observations 12
R2 0.784
Adjusted R2 0.737
Residual Std. Error 0.001 (df=9)
F Statistic 16.378∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) State: GA

infection rate(t)

constant 0.001
(0.003)

vac (t − 1) 0.020
(0.014)

variation visitsMA(t, t − 1) 0.011∗∗

(0.005)

Observations 12
R2 0.792
Adjusted R2 0.746
Residual Std. Error 0.001 (df=9)
F Statistic 17.154∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(c) State: NE

infection rate(t)

constant -0.004
(0.021)

vac (t − 1) 0.048
(0.055)

variation visits MA(t, t − 1) 0.278∗∗

(0.121)

Observations 12
R2 0.781
Adjusted R2 0.732
Residual Std. Error 0.003 (df=9)
F Statistic 16.004∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(d) State: NH

infection rate(t)

constant -0.014
(0.033)

vac (t − 1) 0.108∗

(0.055)
variation visits MA(t, t − 1) 120.188∗∗

(51.560)

Observations 12
R2 0.813
Adjusted R2 0.772
Residual Std. Error 0.004 (df=9)
F Statistic 19.629∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(e) State: NM

infection rate(t)

constant 0.055∗∗

(0.023)
vac (t − 1) 0.187∗

(0.083)
variation visits MA(t, t − 1) -0.300

(0.506)

Observations 12
R2 0.766
Adjusted R2 0.714
Residual Std. Error 0.003 (df=9)
F Statistic 14.762∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(f) State: SD

infection rate(t)

constant 0.022
(0.048)

vac (t − 1) 0.219∗

(0.106)
variation visits MA(t, t − 1) 1.770

(1.142)

Observations 12
R2 0.805
Adjusted R2 0.762
Residual Std. Error 0.007 (df=9)
F Statistic 18.564∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(g) State: VA

infection rate(t)

constant 0.005
(0.003)

vac (t − 1) 0.039∗∗∗

(0.010)
variation visits MA(t, t − 1) 0.026∗

(0.012)

Observations 12
R2 0.915
Adjusted R2 0.896
Residual Std. Error 0.000 (df=9)
F Statistic 48.286∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(h) State: WV

infection rate(t)

constant -0.006
(0.011)

vac (t − 1) 0.123∗

(0.057)
variation visits MA(t, t − 1) 0.760∗∗∗

(0.166)

Observations 12
R2 0.871
Adjusted R2 0.842
Residual Std. Error 0.003 (df=9)
F Statistic 30.284∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes. Infection rate(t) is discussed in Table 1. Vac (t − 1) is discussed in Table 2. Variation visits MA(t, t − 1) is
calculated as the residual of visits MA(t, t − 1) after controlling for vac (t − 1).

after controlling for vaccination rates, and then regress infection rates on both vaccination rates and the

residual of the foot traffic. As shown in Table 4, the vaccination rate remains statistically significant in

most states, with the estimated coefficient positive in all states. These results reinforce our theoretical

claim that vaccination can, under certain conditions, contribute to increased infection rates—highlighting

the complex, non-monotonic relationship between protective measures and disease spread.

Finally, we check the robustness of our results by incorporating the month when a given state lifted all

restrictions lifted as a binary variable. Appendix A displays these months. Using regulation as an indicator

variable reflecting above dates, we regress residuals of foot traffic, vaccination rate and regulation over

the infection rate. Table 5 shows that regulation is not a statistically significant variable in explaining the

increase in infection rates except for one state, South Dakota (SD). This table also shows that vaccination

rate is statistically significant in the majority of states, adding further evidence that increasing vaccination

rates is the primary driver in increasing infection rates.
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Table 5: Variation in foot traffic, vaccination rate and regulations on infection rate regressions

(a) State: CO

infection rate(t)

constant 0.013
(0.012)

regulation -0.001
(0.002)

vac (t − 1) 0.039∗

(0.018)
variation visits MA(t, t − 1) 1.440

(6.606)

Observations 12
R2 0.787
Adjusted R2 0.708
Residual Std. Error 0.001 (df=8)
F Statistic 9.882∗∗∗ (df=3; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) State: GA

infection rate(t)

constant 0.002
(0.004)

regulation -0.002
(0.007)

vac (t − 1) 0.019
(0.015)

variation visits MA(t, t − 1) 0.221
(0.139)

Observations 12
R2 0.795
Adjusted R2 0.719
Residual Std. Error 0.001 (df=8)
F Statistic 10.360∗∗∗ (df=3; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(c) State: NE

infection rate(t)

constant -0.001
(0.026)

regulation -0.010
(0.044)

vac (t − 1) 0.038
(0.070)

variation visits MA(t, t − 1) 4.276∗

(2.183)

Observations 12
R2 0.782
Adjusted R2 0.700
Residual Std. Error 0.003 (df=8)
F Statistic 9.569∗∗∗ (df=3; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(d) State: NH

infection rate(t)

constant -0.006
(0.042)

regulation -0.019
(0.052)

vac (t − 1) 0.094
(0.071)

variation visits MA(t, t − 1) 2356.364∗

(1264.382)

Observations 12
R2 0.816
Adjusted R2 0.748
Residual Std. Error 0.004 (df=8)
F Statistic 11.862∗∗∗ (df=3; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(e) State: NM

infection rate(t)

constant 0.072∗∗

(0.026)
regulation -0.043

(0.035)
vac (t − 1) 0.178∗

(0.081)
variation visits MA(t, t − 1) -7.209

(6.812)

Observations 12
R2 0.803
Adjusted R2 0.729
Residual Std. Error 0.003 (df=8)
F Statistic 10.882∗∗∗ (df=3; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(f) State: SD

infection rate(t)

constant 0.022
(0.048)

regulation 0.000
(0.000)

vac (t − 1) 0.219∗

(0.106)
variation visits MA(t, t − 1) 17.695

(11.415)

Observations 12
R2 0.805
Adjusted R2 0.762
Residual Std. Error 0.007 (df=9)
F Statistic 18.564∗∗∗ (df=2; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(g) State: VA

infection rate(t)

constant 0.008∗

(0.004)
regulation -0.005

(0.005)
vac (t − 1) 0.039∗∗∗

(0.010)
variation visits MA(t, t − 1) 0.253

(0.307)

Observations 12
R2 0.926
Adjusted R2 0.899
Residual Std. Error 0.000 (df=8)
F Statistic 33.528∗∗∗ (df=3; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(h) State: WV

infection rate(t)

const -0.006
(0.019)

regulation -0.000
(0.031)

vac (t − 1) 0.123∗

(0.065)
variation visits MA(t, t − 1) 32.926∗∗

(10.254)

Observations 12
R2 0.871
Adjusted R2 0.822
Residual Std. Error 0.003 (df=8)
F Statistic 17.946∗∗∗ (df=3; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes. Infection rate(t) is discussed in Table 1. Regulation is a binary variable that takes value 0 if the time period
is before all restrictions lifted, and 1 afterwards. Vac (t − 1) is discussed in Table 2. Variation visits MA(t, t − 1) is
discussed in Table 4.

5 Conclusion

The COVID-19 pandemic has underscored the importance of incorporating patterns of social interaction

and behavioral responses into mathematical epidemiological models. In this context, our work extends

the concept of network hazard to epidemiology originally developed to analyze systemic risk in financial

networks. We highlight a potential downside of relying solely on protective measures without regulat-

ing contact rates, unless availability and efficacy of the protective measure is significant. While such

measures reduce the individual risk of transmission, their increased availability and efficacy may induce

greater comfort in engaging with central agents or locations, thereby expanding the network of potential

transmission pathways. As imperfect protective measures become more accessible, the resulting increase

in interactions with central nodes can elevate the overall risk of infection, potentially offsetting the direct

benefits of improved protection at the population level. Furthermore, the correlated nature of exposures

through central nodes can generate fat-tailed distributions of infections, leading to more frequent super-

spreader events that strain healthcare capacity and elevate fatality rates. We empirically validate the

16



testable implications of our theoretical framework using CDC data on vaccination and infection rates,

along with geospatial foot traffic data from U.S. states during a period of gradually increasing vaccine

uptake.

A Timeline of When States Lifted All Restrictions

The table below shows the dates on which states lifted all social restrictions.

State Name All Restrictions Lifted10

Colorado (CO) June 2021

Georgia (GA) May 2021

Nebraska (NE) April 2021

New Hampshire (NH) May 2021

New Mexico (NM) July 2021

South Dakota (SD) -

Virginia (VA) June 2021

West Virginia (WV) April 2021
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