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Abstract

This paper introduces a novel form of moral hazard specific to net-
works and illustrates this concept using simple models from coordination
games, epidemics, supply chains, and financial networks. In these mod-
els, agents form beneficial links that also propagate costly contagion.
Endogenously, second-order contagion risk constrains the concentration
of connections around central agents. Protective measures against con-
tagion, such as vaccines, subsidies, or bailouts, mitigate contagion risk,
subsequently increasing concentration. However, if these protective mea-
sures are imperfect or costly, shocks to central agents can result in greater
harm and increased welfare variance, as evidenced in disease outbreaks,
aggregate volatility, or financial crises.
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1 Introduction

In recent years, networks have gained significant prominence across various
markets. The emergence of the internet and social media has facilitated the
expansion of social networks, enabling the rapid dissemination of information
and disrupting traditional marketing practices. Additionally, advancements
in transportation and communication technologies have contributed to the
globalization of supply chains, while increased mobility and income growth
have broadened opportunities for global tourism and labor mobility. Further-
more, contemporary central banking post the gold standard, the relaxation of
branching restrictions, and the growth of computational power have resulted
in increasingly complex yet accessible financial contracts and systems.

The advantages of a more interconnected world are accompanied by notable
drawbacks. The interdependence of agents within a network creates vulner-
abilities that may be transmitted through links within the network, raising
concerns about contagion. For example, natural disasters can lead to down-
stream supply chain disruptions, infectious diseases can proliferate through
personal connections, and banks can experience cascading failures.

The granular nature of networked interactions differentiates these negative
externalities from those found in standard economic models. A bottleneck
link (as in Manea (2021)) or a central agent (as in Galeotti and Goyal (2010))
can disproportionately influence economic outcomes, provided that they are
not immune to contagion. Consequently, comprehending the formation of
networks and the interplay between economic fundamentals and the topological
properties of endogenous networks is crucial for predicting economic outcomes.
For instance, endogenous superspreader events posed a significant threat to
public health during the COVID-19 pandemic. Certain public figures exert
extensive influence over polarized societies, as evidenced by social media. Large,
interconnected banks were at the heart of the 2008 financial crisis, which caused
unprecedented turmoil in nearly a century.

In light of the intricate and far-reaching implications of contagion, authorities
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have sought to mitigate their effects. One policy tool involves intervening in link
formation, such as imposing quarantines to prevent socialization or imposing
capital adequacy to limit banks’ derivative exposures to one another. Although
theoretically effective, such regulation often proves insufficient, prompting
authorities to also intervene in contagion processes. For example, vaccines
can reduce transmission probabilities across links, while bailouts can provide
capital to institutions already exposed to default risks.

This study investigates the consequences of interventions in contagion when
links are endogenously formed prior to contagion. The core concept is that the
availability of protective measures may cause agents to become less cautious,
resulting in networks that are more susceptible to contagion. If protective
measures are imperfect or impose significant social costs, the outcome is a
form of collective moral hazard, referred to as network hazard. The presence
of protective measures may lead to a higher number of infections ex-ante or
increased social costs ex-ante due to an endogenously more vulnerable network.
For instance, more effective or widely available vaccines may encourage larger
social gatherings, potentially leading to superspreader events with a smaller
probability, but resulting in a greater number of infections. In the context of
bailouts, financial networks may become more interconnected and diversified
around core banks, which may default with a small probability but have a
larger overall impact on peripheral banks.

Network hazard can manifest in numerous forms through the various types of
effects it can have on the network in question. To demonstrate a particularly
pertinent and novel type of network hazard, we employ the most elementary
example. Consider a two-sided market, such as opposite genders in a matching
market confronted with the risk of an infectious disease (or upstream and
downstream producers in a supply chain, or insurance sellers and buyers in
a financial network). Agents can get infected exogenously, but they can also
transmit infection through links formed. Let one side be represented by a single
agent A, and the other side be comprised of agents B and C, as depicted in
Figure 1a. Assuming B and C are identical, they each determine whether to
establish a connection with A for a private gain. A accepts all connections.
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Depending on the efficacy of a protective measure the network can be one of
three in Figure 1a-c without loss of generality.

A

B C

Figure 1a
Low efficacy

protective measure.

A

B C

Figure 1b
Medium efficacy

protective measure.

A

B C

Figure 1c
High efficacy

protective measure.

Figure 1: Stable network

As the protective measure gets more effective against the disease, the endogenous
network changes from Figure 1a to 1b, then to 1c. To illuminate the key idea,
think of a status-quo where the protective measure efficacy is just below the
cutoff at which network 1c would be formed. Instead, 1b is formed. This means
B is content to have a connection with A, signifying that B is willing to accept
the risk of contagion originating from A and infecting B, for the private payoff
of the connection with A. Although B and C are symmetric, C does not form a
connection with A, specifically due to B’s existing connection to A. The risk of
contagion originating (exogenously) at B, subsequently infecting A, and then
infecting C is not a risk C is willing to assume on top of the risk of contagion
originating from A and infecting C. In other words, the risk of second-order
contagion from B through A disciplines C into not connecting to A. Now
increase the efficacy of the protective measure slightly, up to the cutoff point
where the network changes from Figure 1b to Figure 1c. This is exactly the
point at which C is not concerned enough with contagion through A due to the
protective measure. Infection probabilities decrease slightly on the intensive
margins, but all agents are now exposed to more agents on the extensive margin.
Hence the infection probability of each agent increases. Importantly, B and C

are now both exposed to contagion that originates at A, making the infection of
B and C more correlated. This increases variance of the number of infections,
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not only its mean.1 Regarding welfare, C’s payoff increases only slightly as he
is indifferent between Figure 1b and 1c at the cutoff, but B’s payoff decreases
considerably due to the second-order exposure to C through A in Figure 1c.
Thus welfare decreases.2

The core argument presented in this simple example can be applied more
broadly.3 To demonstrate, this paper introduces four elementary models of
distinct settings to elucidate the concept of network hazard.

Related literature and the structure of the paper Section 2 explores
coordination games building upon a simplified variant of Galeotti, Golub and
Goyal (2020). Morris (2000) describes the correspondence between contagion
and coordination games, while Galeotti, Golub and Goyal (2020) investigate
interventions on fixed networks where a coordination game is played. We
add network formation to further investigate the interplay between network
formation, coordination games played on networks, and interventions.

Section 3 examines epidemics in a standard independent cascades model ex-
tended to incorporate network formation. A companion paper, Celdir and Erol
(2023), utilizes a less sophisticated framework than presented here to guide
their empirical analysis, and document that foot traffic to central locations
and infection rates increase as vaccination rates rise.

Section 4 introduces a model of supply chains where downstream firms choose
their upstream suppliers. Elliott, Golub and Leduc (2022) and Acemoglu and
Tahbaz-Salehi (2020) study how minor shocks can be amplified throughout
the network, resulting in fragility and volatility. This paper contributes the
notion that networks more susceptible to fragility may emerge in response to

1This can have further consequences when hospital capacity is taken into account, as was
the case in COVID-19 pandemic..

2We neglect A’s payoff due to lack of discipline in this simple example. A’s payoff
parameters can be scaled up and down without affecting the network.

3In independent cascades such as infectious diseases, more links increase contagion risk.
In threshold contagion models, law of large numbers can wash out idiosyncratic risk if a
large number of links are preferred by agents. Nevertheless, network hazard manifests under
threshold contagion when shocks are correlated.
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the anticipation of interventions. Liu (2019) studies macroeconomic distortions
in endogenous input-output relationships between sectors in face of selective
industrial policies. This paper considers resilience consequences of interventions.

Section 5 introduces a model of derivative contracts. Elliott, Golub and
Jackson (2014) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) provide
canonical models of financial contagion. Elliott, Georg and Hazell (2021) and
Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) examine contagion and the
formation of financial networks.4 A companion paper, Erol (2019), analyzes
some manifestations of network hazard in a stylized setup. The model here
incorporates more detailed financial contracts and costly bailouts.

Testing the broader theory is challenging, as pandemics, tsunamis, or financial
crises are uncommon (yet devastating) events, and the anticipation of interven-
tions is often unobserved. Celdir and Erol (2023) document that, as vaccines
began rolling out in December 2020, foot traffic to central locations such as
gyms, restaurants, and airports started to increase gradually, culminating in a
massive outbreak in January 2022. In the case of financial networks, counterfac-
tuals regarding the anticipation of bailouts are nearly nonexistent. Anderson,
Erol and Ordonez (2020) demonstrate that the concentration of short-term
borrowing increased after the establishment of the Federal Reserve System,
which also served as the lender of last resort. These findings align with the
testable predictions of the theory.

2 Coordination games and interventions

Model. Here we study network formation and monetary interventions using
a simple variant of the model in Galeotti et al. (2020) OA3.4. Agents first
form undirected links which make up the network denoted e. A link between
agents i and j is indicated by eij = eji ∈ {0, 1}. If eij = 1 we say i and j are
connected and we denote eii = 0. The cost of eij = 1 is cij for i. After the

4Erol and Vohra (2022) also studies network formation and contagion. Erol and Ordonez
(2017) studies interventions with network formation rather than interventions with contagion.
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formation of the network, shocks τi > 0 realize. Each agent i simultaneously
chooses ai ∈ {0, 1} with complete information. Given an action profile a, the
payoff of i in the coordination game is given by vi(a) = ai

∑
j (βijaj − τi) eij.

The ex-post payoff of i is

ui(a, g) =
∑
j

(ai (βijaj − τi)− cij) eij

It is assumed that agents play the best5 Nash equilibrium of the coordination
game and they form (pairwise) stable networks given the expected continuation
payoffs.

We focus on a simple case. There are two possible shocks τi ∈ {gi, bi}. The good
shock gi > 0 has probability αi and the arbitrarily large bad shock bi > 0 has
probability 1− αi. In terms of the risk an agent imposes on its counterparties,
there is one risky agent denoted r, and two ex-ante identical safe agents s1 and
s2. A link between a safe agent and the risky agent gives benefit βs to the
safe agent and βr to the risky agent where βr > βs. Also, αs > αr. We take
βs > gs and βr > gr so that links with the opposite can be formed rationally.
The benefit of link between two safe agents to be zero but its cost is positive,
so safe agents do not form a link with each other. Links cost 0 to the risky
agent and c > 0 to safe agents so network formation is driven mainly by the
incentives of safe agents. Assume 2αs > 1, denote κ ≡ c

βs−gs
, and ω ≡ 2gr − βr.

Proposition 1. The unique stable network is given as follows. Safe agents do
not have links with each other.

Under ω > 0, both s agents have links with r if αrα
2
s > κ, only one s agent has

a link with r if αrαs > κ > αrα
2
s, and there are no links if κ > αrαs.

Under ω < 0, both s agents have links with r if αrαs > κ, and there are no
links if κ > αrαs.

The most relevant case for network hazard is ω > 0 and αrαs > κ > αrα
2
s.

Under ω > 0, the benefit from one link is insufficient to play ar = 1. This
5Top element of the lattice of Nash equilibria.
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means that if r has two connections and sk gets a bad shock, r plays 0, which
then pushes sk′ to play 0 as well. This means safe agents are exposed to
second-order counterparty risk of they both connect with r.

Welfare and interventions. Imagine a principal who observes the network
and the shocks, and can commit a transfer scheme conditional on actions to be
taken to maximize welfare. Given the transfer scheme ti(ai|e, τ), agent i’s payoff
in the coordination game is vi(a|t, e, τ) = ti(ai|e, τ)+

∑
j ai (βijaj − τi) eij . The

welfare cost of transfers is κ ≥ 1. The principal’s objective is to maximize
welfare. We take κ ↓ 1 to rule our redundant transfers. This is equivalent
selecting the minimal transfer scheme among the optimal ones. Ex-post welfare
is then given by6

w(a|t, e, τ) = −
∑
i

ti(ai|e, τ) +
∑
i

vi(a|e, τ) =
∑
i

∑
j

ai (βijaj − τi) eij

Denote ω′ = βs − gs.

Proposition 2. Under ω + ω′ < 0 or ω′ > 0 there are no transfers. Accord-
ingly, the unique stable network is the same with the one in the absence of
interventions.

Under ω′ > −ω > 0, tr(1|e, τ) = −ω if r has two links, for one k ∈ {1, 2} r

and sk have good shocks and sk′ has a bad shock. All other transfers are 0 in
all other cases of shock realizations and networks. The unique stable network
involves two links if αrαs > κ and no links if αrαs < κ.

The precise role of an optimal and non-zero transfer is to stop second-order
counterparty risk. There are no interventions if there is no contagion. Given
that second-order counterparty risk is eliminated by interventions, the network
formed involves two links. But interventions do not alter first-order counterparty
risk.

6Given that transfers are conditional individual actions, the best Nash equilibrium is still
well-defined.
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Proposition 3. Assume ω′ > −ω > 0 and αrαs > κ > αrα
2
s. Variance

of welfare is larger in the presence of interventions than in the absence of
interventions. The change in the expectation of welfare can be positive or
negative depending on parameters.

Network hazard arises in the case of ω′ > −ω > 0 and αrαs > κ > αrα
2
s. In

the absence of interventions it is individually rational for each safe agent to
have a link with the risky agent, but only if the other safe agent does not
have a link with the risky agent. Interventions remove this discipline and both
safe agents form links with risky agent. Then both safe agents are subject to
first-order counterparty risk, which is now correlated due to the anticipation
of interventions. This induces high variance in welfare through the increased
first-order counterparty risk.

3 Epidemics and protective measures

Model. Think of a population of agents that obtain benefits from socialization
but each connection results in the risk of disease transmission. For agents i and
j, vij is benefit i has from having a connection with j. Ni denotes the set of
agents that i has connections with and di = |Ni| is i’s degree. The interaction
payoff of i us −d2i +

∑
j∈Ni

vij.

There is an infectious disease. Each agent has η probability of being infected
externally. Each connection entails risk of transmission. The base transmission
probability is τ0 if one agent in the connection is infected and the other is not.
There is a protective measure that reduces the transmission probability by a
factor m < 1, down to τ = mτ0.7 Getting infected has cost κ.

The model can speak to various other environments. Let each agent have a
type t ∈ {a, b}. Connections can reflect friendships and types can capture
tastes for socialization when vij > 0 for all agents. The environment can also

7Costs of using the protective measure is assumed away so all agents adopt the protective
measure.
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describe two-sided matching by assuming that within group values are zero:
vij = 0 if i, j ∈ t ∈ {a, b}. Connections can be education while types are
teachers and students. Connections can be shopping while types are customers
and employees of grocery stores. Connections can be sexual partnerships or
encounters and types can reflect sexual orientation.

We focus on a simple case to highlight network hazard but high level insights
hold more generally. Consider two a-type agents, a1, a2, and two b-type agents,
b1, b2. The value of within-group connections are 0. The value of a cross-group
connection for an a-type agent is sufficiently large so that a-types welcome all
connections to b-types. Let v1 ≡ vbka1 > v2 ≡ vbka2 for both k = 1, 2. This
means b-types have the same preferences over a-type agents they prefer to
connect with a1 over a2. We call a1 the attractive agent and a2 the unattractive
agent. Assume 3 ≥ v1 > v2 so that b-type agents want at most one connection.

Stability. We use the notion of (strong) stability. Absent the infectious
disease, the unique stable network involves both b-types having connections
with a1. The potential spread of the disease can alter this. When both b-types
are connected with a1, bk can get infect a1, who can then infect bk′ . This is
second-order counterparty risk. The efficacy of the protective measure m plays
a key role in determining the stable network.

Proposition 4. There are thresholds m3 ≤ m2 < m1 such that the unique
stable network is given as follows. If the protective measure is effective, m < m3,
both b-type agents are connected with the attractive agent a1. If the protective
measure is mildly effective, m3 < m < m2, one b-type agent is connected with
the attractive agent a1 and the other is connected with the unattractive agent
a2. If m2 < m < m1, one b-type agent is connected with the attractive agent a1
and the other b-type agent is not connected to any agent. If m1 < m, there are
no connections.8

8m1 ≡ m∗
1, m2 ≡ max{m∗

2,m
∗} ≤ m3 ≡ min {m∗∗,m∗} where m∗

i ≡ vi−1
κ(1−η)ητ0

, m∗ ≡√
1+4

v1−1
κη −1

2(1−η)τ0
, m∗∗ ≡

√
v1−v2√

κη(1−η)τ0
. Note that we either have m∗

2 < m∗ < m∗∗ or m∗
2 > m∗ >

m∗∗ or m∗
2 = m∗ = m∗∗. So m3 = m2 ⇐⇒ m∗

2 ≤ m∗∗ ⇐⇒ v2 − 1 ≤
√
κη(v1 − v2)
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As m decreases meaning that the protective measure gets more effective, the
network of connections becomes more interconnected. For b-type agents, at
the margin m1, it becomes individually rational to connect with the attractive
agent. At m2, it becomes individually rational to connect with the unattractive
agent as well. However, second-order counterparty risk is still high enough that
it is not desirable to connect with the attractive agent at the same time. At
m3, second-order counterparty is low enough that both b-type agents connect
with the attractive agent. These are shown in Figure 2

a1

Low efficacy
m > m1

a1

m1 > m > m2

a1

m2 > m > m3

a1

High efficacy
m3 > m

Figure 2: Stable network

Proposition 5. Let η < 1/4. As the protective measure gets more effective (m
goes down) the expectation and variance of the number of infections increase at
points m ∈ {m1,m2,m3} at which the stable network changes.

We report the distribution of the number of infections, its mean, and its variance
in the proof of Proposition 5. The increases at m1 and m2 can be expected. The
number of connections increase at these margins. The switch at m3 does not
introduce a new connection. A b-type agent, say bi, switches its connection with
a2 to a connection with a1. This is because the protective measure becomes
effective enough that b types are less concerned with being infected “by each
other” via a1, the attractive a-type agent.9 This effect increases the expected
number of infections. Additionally, now that both b-type agents are exposed to
the exogenous infection risk of the attractive agent a1, variance of infections
also increase. These are illustrated in Figures 3 and 4.10 The vertical lines
correspond to m3.

9This happens in the case of v2 − 1 ≤
√

κη(v1 − v2).
10η = 0.1, τ0 = 0.75, v1 = 3, v2 = 2.5, κ = 40
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Figure 3: Mean and standard deviation of the number of infections
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Figure 4: Mean and standard deviation of welfare

There are numerous avenues for future research. Limited hospital capacity posed
a significant challenge in combating COVID-19. Network hazard contributes to
greater variance in infection rates, underscoring the importance of considering
network hazard in the context of constrained hospital resources. Another
essential aspect to explore is the integration of multiple protective measures,
such as masks that reduce transmission and vaccines that alleviate disease
severity.

4 Supply chains and subsidies

Model. There are two upstream firms U = {u1, u2}. They produce substitute
but differentiated products. There are two downstream firms D = {d1, d2}.
Each downstream firm picks a specific production technology that is compatible
with the input from only one of the suppliers. Switching costs are high enough
that once an upstream supplier’s technology is chosen by a downstream firm,
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the supplier becomes the monopoly supplier of the downstream firm.

Upstream u ∈ U uses specific external input which has price ku given by k

with probability αu and k′ with probability 1− αu where k′ > k. We assume
αu1 > αu2 . Downstream d ∈ D uses a specific external input and an internal
input which are perfect complements. The specific external input is has price
cu given by c with probability δ and c′ with probability 1 − δ where c′ > c.
The internal input is the output of d’s chosen supplier/upstream firm. Each
d ∈ D is a monopolistic seller of its own output to a consumer who has value
p, all of which is extracted by d. The value p is shared by d and its supplier.
The supplier gets pU share whereas d gets pD = p− pU . Equivalently, the price
of internal input is pU , which is fixed for simplicity. We assume δpU > k and
pD > c so production is efficient for firms when costs are low.

First, downstream firms choose their technologies/suppliers simultaneously.
Then costs of upstream firms are realized independently. Then upstream firms
build their inventory. Then costs of downstream firms are realized independently.
Then downstream firms purchase inputs and produce. Then consumers buy
outputs of the downstream firms.

When an upstream firm has two buyers, total demand for an internal input can
exceed its supply. In particular, if u has two downstream buyers but produces
1 instead of 2, we assume that the supplier sells on a fist-come-first-serve basis.
Each downstream buyer has probability 1/2 of being supplied.

We assume k′, c′ > p. Then firms high costs, c′ or k′, do not produce. Denote
Du ⊂ D the downstream buyers of u ∈ U and ud ∈ U the supplier of d ∈ D.
Then the ex-post payoff of u is vu = 0 if it has high cost and

vu = −kuqu + pU
∑
d∈Du

qd

if it has low cost. Regarding d, if either ud or d has high cost, or ud does not
supply d, d’s ex-post payoff is vd = 0. Otherwise it is

vd = (−c+ pD) qd
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Equilibrium. At the stage of choosing their suppliers, downstream firms face
first-order counterparty risk in that their supplier may have high cost and
not produce. Upstream firms also face first-order counterparty risk as their
downstream buyers may have high costs and not demand any input. Since
upstream firms must first build inventory, the first-order counterparty risk can
induce an upstream firm with two buyers to produce only 1 unit instead of 2
even when it has two buyers. This creates second-order risk for downstream
firms by reducing their probability of being supplied.

Proposition 6. If αu2

αu1
> 1 − δ + δ

2
and k > δ2pU , downstream firms choose

separate suppliers. Off-the-path, if both downstream firms choose u and u has
low cost, it produces 1 and supplies at most one downstream firm.

If αu2

αu1
< 1− δ + δ

2
and k > δ2pU , both downstream firms choose u1. If u1 has

low cost, it produces 1 and supplies at most one downstream firm.

If k < δ2pU , both downstream firms choose u1. If u1 has low cost, it produces 2
and supplies each downstream firm that has a low cost.

The first case is the most relevant. As u1 entails smaller first-order counterparty
risk, it is a preferred supplier. However by k > δ2pU , the cost of building
sufficient inventory to supply both downstream firms is high relative to the
expectation of demand. Even if u1 were chosen by both downstream firms,
u1 would produce only 1. Then each downstream firms faces the risk of not
being supplied if the other downstream firm has low cost. This second-order
counterparty risk is costly for downstream firms. By αu2

αu1
> 1 − δ + δ

2
, the

first-order counterparty risk entailed by u2 is low so that one downstream firm
prefers high first-order counterparty risk over high second-order counterparty
risk and chooses u2. Depending on the economic costs of inputs, second-
order counterparty risk creates an inefficiency by increasing the first-order
counterparty risk.

Welfare and interventions. In identifying welfare we specify the economic
costs of inputs. Internal inputs are those that downstream firms buy from
upstream firms. These are transfers and do not count towards the ex-post
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welfare criterion. The external costs of firms can be varied in a similar vein.
Some costs of firms are payments to agents within the economy who produce
these inputs at low cost. For example, wages for high skill labor, debt to
banks, patent rentals, solar energy are produced using another fundamental
input that has relatively low marginal cost to produce. This situation can
arise in imperfectly competitive segments of the economy. The other costs
of the firm are payments for imported goods or for inputs that are produced
domestically at a relatively high cost. Domestically produced inputs that are
sold at competitive markets would entail economic costs close to the cost for
the firm. Let eu/d be the economic cost of the external input of u/d. Then
denoting qu/d the quantity produced, ex-post welfare is w

w =
∑
d∈D

(p− ed) qd −
∑
u∈U

euqu

The source of the shock to a firm’s costs can have “real” economic roots or can be
“financial” in nature. For example inflation in specific sectors can increase the
cost of corresponding inputs for firms without necessarily making production
inefficient. Alternatively mergers and acquisitions can alter competition in a
sector and alter prices without necessarily increasing the production costs of
inputs. To highlight network hazard, we take a high cost for downstream firms
to be a financial shock in nature and to upstream firms to be real: ed = 0,
cu ∈ {c, c′} whereas eu = ku ∈ {k, k′}.

A bad shock to a downstream firm increasing its costs can result in inefficiently
low production. The government can provide subsidies to corresponding firms
to promote efficient production. We consider a government that, following
each shock, can offer a subsidy to the firm hit by the shock for its external
inputs. Denote su/d the subsidy to u/d per unit of output to subsidize its
cost of external inputs. The total cost of transfers is

∑
u∈U suqu +

∑
d∈D sdqd

assuming away distortionary effects of transfers for simplicity. To discipline
redundant transfers focus on minimal subsidies that implement the efficient
outcome. This specification also provides robustness to small distortionary
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costs of transfers.

Proposition 7. In the presence of subsidies, each downstream firm d ∈ D

receives sd = c′ − pD if its supplier has low cost. Upstream firms do not receive
subsidies. Both downstream firms choose u1.

Since k′ > p, u and its buyers do not receive a subsidies if ku = k′. Downstream
firms receive subsidies whenever they have high costs that would hinder their
production provided that their supplier has low cost. Given that the upstream
firms do not face first-order counterparty risk, they produce enough to supply
the equilibrium demand of their downstream buyers. This eliminates second-
order counterparty risk. Since first-order counterparty risk that downstream
firms face is not altered but second-order counterparty risk is eliminated, both
downstream firms choose the same supplier, u1. Next we describe the welfare
consequences of such interventions and network reactions. For clarity we take
αu1 and αu2 to be close.

Proposition 8. Suppose that αu2 ≈ αu1 = α < 1 − δ
2(1−δ)

and k > δ2pU .
Expectation and variance of welfare is larger in the presence of subsidies than
in the absence of subsidies.

Expected welfare naturally increases with interventions. What prevented
downstream firms from choosing the supplier with lower first-order counterparty
risk was second-order counterparty risk in the first place. Subsidies remove
this inefficiency. On the other hand, both downstream firms choose the same
supplier with turns the idiosyncratic shock of the supplier into a source of
aggregate volatility.

5 Derivatives and bailouts

Model. There is one investment bank n and two commercial banks c1, c2.
Commercial banks have 1 + p deposits borrowed from their corresponding
depositors and each has a project that needs 1 unit of investment. Successful
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projects have return rate rc with probability σc and 0 with probability 1− σc

. Each commercial bank has illiquid assets worth lcλc at maturity. Illiquid
assets are divisible. Early liquidation of illiquid assets that is worth λc > 1

at maturity recovers 1. We assume lc > 1 + p so deposits are secured and
depositors do not ask for interest.

The investment bank sells insurance and invests the proceeds into a financial
instrument which has return rate rn with probability σn and 0 otherwise with
probability 1 − σn. The investment bank has illiquid assets worth lnλn at
maturity. Similar to commercial banks, early liquidation of illiquid assets
worth λn > 1 at maturity recovers 1. We simplify the analysis by fixing prices.
Insurance contracts cost p, and entitles the corresponding commercial bank to
a claim p′ if its project fails. If n fails to fulfill the claims of counterparties,
payments are made proportional to liabilities. In particular, if both commercial
banks have insurance and both are owed p′, n makes the maximum payment it
can and divides it equally between the commercial banks.

Equilibrium. We make several parametric assumptions. Each commercial
bank can repay its depositors if its project succeeds without liquidating any
of its illiquid assets: rc > 1 + p. Commercial banks are willing to invest in
their projects using deposits: σc (rc − 1) > (1− σc)λc. If no projects fail, there
are no liquidations: prn > p′ > 1 + p. Finally, we focus on 1 + p > ln. This
means that if n has low return from its investment and its counterparties have
positive claims, then n must liquidate all of its illiquid assets to in trying to
fulfill the claims of its counterparties. In other words, the contracts are not
fully securitized and insurance involves counterparty risk.

Denote

A =
σn (rnp− (1− σc) p

′)

(1− σn)(1− σc)λn

B = 1 + p− 1

1− σn

− C

λc

C =
σn

1− σn

(p′ − 1− p)− σc

1− σc

p

1− σn
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We report results on ln < A and relegate ln > A to the appendix. The
specification ln < A implies that the investment bank’s expected losses are
small relative to the expected gains from its project so that the investment
bank prefers to sell as much insurance as possible.

Proposition 9. If ln < B, there is no insurance. If B < ln < 2
1+σc

B, only one
commercial bank has insurance. If 2

1+σc
B < ln, both commercial banks have

insurance.

If ln < B, an insurance contract is not individually rational for commercial
banks as the investment bank does not have sufficient collateral. If ln > B,
there is sufficient collateral. Commercial banks find it individually rational to
have insurance. However, if ln < 2

1+σc
B, commercial banks refrain from having

insurance at the same time, since the investment bank does not have sufficient
collateral to cover for the the event that both projects of commercial banks fail.
If ln > 2

1+σc
B, the investment bank has sufficient collateral to make insurance

sufficiently secure for both commercial banks at the same time.

The relevant case for network hazard is B < ln < 2
1+σc

B. This is when each
commercial banks find insurance individually rational, but only if the other
commercial bank does not buy insurance. If the investment bank’s project
fails, it must rely on its collateral to make payments to commercial banks.
Its collateral is limited, and must be shared between all claimant commercial
banks whose projects have failed. Each commercial bank understands that if
the other commercial bank also buys insurance, and its project fails, there will
be less to claim from the investment bank, which deters the commercial bank
from buying insurance. One commercial bank buys insurance and the other
does not.

Welfare and interventions. Suppose that there is a government that can
intervene with capital injections after project returns materialize before liq-
uidations take place. We call an optimal capital injection that makes the
an institution not liquidate any illiquid assets a bailout provided that the
institution would liquidate some illiquid assets otherwise. Bailouts are funded
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by distortionary taxation and each unit of transfer has cost κ ≥ 1. The cost of
bailouts is an important determinant of optimal interventions. To highlight
network hazard in the most clear way we assume κ < λc.

Proposition 10. Under κ < λn, the investment bank is bailed out when it
faces liquidations. Accordingly, commercial banks never need bailouts. The
network formed formed involves two insurance contracts.

Under κ > λn, only commercial banks are bailed out when they face liquidations.
If ln < −C, there is no insurance. If 0 < −C < ln, there is one insurance
contract. If 0 < C, there are two insurance contracts.

In the case of κ < λn, the investment bank is bailed out when it faces liqui-
dations. Then there is no need to bailout an insured commercial bank as its
counterparty risk is eliminated by the bailout of the investment bank, and
the insurance contract prevents liquidation by the commercial bank when
the investment bank’s project succeeds. Under κ > λn, only the commercial
banks receive bailouts. One may think that it could be optimal to bailout the
investment bank as these transfers would be channeled to commercial banks,
which would reduce the cost of bailing out the commercial banks. This not the
case. Capital injections, either directly to commercial banks or through the
investment bank, aims to prevent the inefficient liquidation of illiquid assets.
The critical observation is that the financial system as a whole must liquidate
the amount that just suffices to pay the depositors. Preventing liquidations
that would suffice to pay the depositors is cheaper if commercial banks are
bailed out directly because λc > λn.

Under κ < λn, the investment bank is saved from any liquidation, and so it
always makes full payments to a claimant commercial bank. A commercial
bank whose project fails receives p′ but pays 1+ p to its depositors, and retains
p′−1−p. This is moral hazard since the counterparty risk that the commercial
bank has taken is indirectly rewarded by the bailout of the investment bank at
expense of taxpayers.

Banks benefit from bailouts they receive as it saves them from elastic liquidation
costs. Moral hazard on the intensive margin conceals the network hazard on the
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extensive margin. Network hazard is illuminated the most under κ > λn in the
case of B < ln < 2

1+σc
B and 0 < C. In this case, in the absence of interventions,

it is already individually rational for a commercial bank to buy insurance, but
this is prevented by the second-order counterparty risk. If c2 has insurance, c1
faces second-order counterparty risk should it buy insurance. Bank c2 can fail,
which then increases the direct counterparty exposure of c1 to n, while such
an exposure would be profitable for c1 if c2 had not bought insurance. This is
distinct from typical forms of moral hazard. For example, in the case of ln < B

and 0 < ln + C, c1 would not find it individually rational to buy insurance in
the absence of interventions, but interventions incentivize c1 to buy insurance
regardless of whether c2 buys insurance or not. This is standard moral hazard.
Network hazard is distinct in that it reduces second-order counterparty risk,
and the sole mitigation of contagion leads to a more interconnected network.

The next task is then to figure out the welfare and stability implications of
such an interconnected network induced by the presence of interventions. We
maintain κ > λn, B < ln < 2

1+σc
B, and 0 < C to single out the effects of

network hazard as much as possible. The distribution of welfare is reported in
the appendix. To discipline the costs and simplify expressions, we take λc, λn, κ

to be close to each other: λn ? κ ? λc. Denote Rn = rnp, κ′ = (1 + p)κ,
κ′′ = (1− σc) (1 + p)κ. Note that κ′′ > κ.11

Proposition 11. The difference in expectation and variance of ex-post welfare
between the presence and absence of interventions is given by

∆E[w] =σnRn − (1− σc) (κ
′′ − κ)

∆Var[w] =σn (1− σn)
[
4 (Rn + 2σcrc − κ′′)

2 −
(
R2

n +Rnκ
′ + κ′′2)]

+ (1− σn)σc (1− σc)
[
2 (rc + κ′)

2 −
(
2r2c + rcκ

′ + κ′2)]
− σc (1− σc)

[
(rc + κ)2 − r2c

]
If Rn > κ′′ there exists r∗c such that for all rc > r∗c , ∆Var[w] > 0.

11By B < ln < 2
1+σc

B we have B > 0. Then by C > 0 we have κ′′ > κ.
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Welfare is typically increased in expectation. As Rn can be arbitrarily large,
the additional investment by the investment bank covers for the added cost
of bailouts and liquidations. Regarding the variance of welfare, the terms
in ∆Var[w] are instructive. The term with +σn (1− σn) captures mainly the
additional variance born out of the increased investment by the investment bank.
The term with +(1− σn)σc (1− σc) is the network hazard term. By the fact
that both commercial banks now buy insurance, they are both exposed to a bad
shock to the investment bank. This creates additional variance proportional
to the individual variance of commercial banks’ payoffs, amplified by the
failure probability of the investment bank. The term with −σc (1− σc) is the
removal of the variance from the commercial bank that would not buy insurance
in the absence of interventions. When Rn > κ′′, the term with σn (1− σn)

dominates the term with −σc (1− σc). Then the network hazard term with
+(1− σn)σc (1− σc) makes variance larger in the presence of interventions.
The idiosyncratic risk of the investment bank becomes a source of aggregate
volatility due to network hazard.

6 Conclusion

Contagion poses a substantial concern in prominent markets. Authorities’ inter-
ventions in contagion through protective measures, such as vaccines, bailouts,
and subsidies, can inadvertently reduce endogenous market discipline against
contagion, leading to networks that are more susceptible to it. As links in
networks are frequently formed by mutual consent, this outcome represents a
form of collective moral hazard, referred to as network hazard. One particularly
noteworthy and nuanced aspect is that agents become less concerned about
their connections transmitting contagion, rather than merely originating it.
This dynamic is not present in standard economic models that do not incor-
porate granular networked interactions and contagion. The interplay between
protective measures and network hazard may result in decreased welfare in
response to improved protective measures, despite complete information. A
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more concentrated network and consequently higher variance in welfare and
contagion reach are common outcomes. Larger variance holds economic signifi-
cance in the context of discontinuous social costs arising from limited hospital
capacity during pandemics, political backlash against large-scale bailout plans,
or any convex ex-post cost of contagion and interventions. Important future
research directions include examining additional and detailed manifestations of
network hazard in each of the environments demonstrated in this study.
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A Proofs

Notation. Throughout the appendix we denote x = p1 ◦ x1 ⊕ p2 ◦ x2 ⊕ ... a
random variable that takes value xi with probability pi for each i. Also B[k, x]
is the binomial distribution with k tries and x success probability. Welfare in
the absence of interventions is denoted w whereas welfare in the presence of
interventions is denoted w′.
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A.1 Coordination games and interventions

(Proposition 1) Safe agents do not form a link between each other. Then
there are three possible networks; no links, one link, two links; between r and
the safe agents. As bi is arbitrarily large, any agent with a bad shock chooses
ai = 0. Also, if sk has a link with r and r chooses 0, then sk chooses 0 because
gs > 0.

Under βr < 2gr, if r has two links and at least one s chooses 0, then r chooses
0 since βr < 2gr. This implies that in equilibrium, in a connected component
with at least one link, all agents choose 0 if at least one agent has a bad shock,
and all agents choose 1 if no agent has a bad shock. Then r’s expected payoff
as a function of the number of its links d is Ur,d = αrα

d
sd (βr − gr). By 2αs > 1

and βr > gr, Ur,d is increasing in d ≤ 2. The payoff of sk if both s1, s2 are
connected to r is Us,2 = αrα

2
s (βs − gs)− c. If one is connected and the other is

not, the one that is connected has Us,1 = αrαs (βs − gs)− c. Notice Us,1 > Us,2.
Then if Us,2 > 0 both safe agents form links with r. If Us,1 > 0 > Us,2, then
one forms a link and the other does not. If Us,1 < 0 there are no links.

Under βr > 2gr, r chooses 0 if and only if r gets a bad shock or all of its
connections get bad shocks. In either case, all agents choose 0. If r gets a
good shock, each s chooses with its own shocks: 0 if and only if the shock
is bad. Then r’s expected payoff as a function of the number of its links is
Ur,1 = αrαs (βr − gr) or

Ur,2 = αr

(
α2
s2 (βr − gr) + 2αS(1− αS) (βr − 2gr)

)
> αrα

2
s2 (βr − gr) > αrαs (βr − gr) = Ur,1

by 2αs > 1. So r prefers to have more links. When sk gets a good shock,
r chooses 0 only when r gets a bad shock. So the payoff of sk is Us,1 =

αsαr (βs − gs) − c if it has a link and 0 otherwise. If Us,1 > 0, i.e. κ < αrαs

both s form links with r. Otherwise there are no links.

(Proposition 2) Consider the auxiliary problem of choosing an action profile
a to maximize V =

∑
i

(
ai
∑

j (βijaj − τi) eij

)
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Given that bi is large enough, a∗i = 0 if τi = bi. Given this,

V =
∑

i:τi=gi

ai

 ∑
j ̸=i:τj=gj

βijajeij

− digi


=
∑

i:τi=gi

∑
j ̸=i:τj=gj

aiajβijeij −
∑

i:τi=gi

aidigi

If i has no neighbors, i’s action is efficient. So there are no transfers.

If i has neighbors but all of i’s neighbors have bad shocks, then a∗i = 0 to save
on
∑

i:τi=gi
aidigi even if i has a good shock.

If i has a good shock and it has a neighbor with a good shock, say j, then
there are two cases. If the third agent also has a good shock, there is no need
for transfers; all agents choose 1. If the third agent is has a bad shock there
are two cases. If the third agents is not connected to i or j, then i and j do
not need transfers and they choose 1. So the only case there can possibly be
an optimal and positive transfer is when all agents are connected, r and one sk

have good shocks, and other sk′ has a bad shock. Due to the complementarities,
it is either optimal that r and sk both choose 0 or they both choose 1. If they
both choose 0, V = 0. If they both choose 1, V = V ∗ ≡ βr + βs − 2gr − gs.

This shows that if V ∗ < 0, then W ≤ 0. Then choosing t = 0 implements
that optimal action profile. In this case there are never any transfers and the
network formed is the same with the absence of interventions.

If V ∗ > 0, optimal action profile is implemented by

tr(1) = (2gr − βr)
+ , tr(0) = 0

tsk(1) = (gs − βs)
+ = 0, tsk(0) = 0

tsk′ = 0

If 2gr < βr, there is no need for transfers: t = 0 and r chooses 1. If 2gr > βr,
then an s agent has expected payoff Us,1 = αrαs (βs − gs) − c regardless of
whether the other s agents has a link with r or not. r, conditional on degree d,
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has expected payoff Ur,d = αrα
d
sd (βr − gr) which is increasing in d. Thus the

unique stable network has two links if αrαs > κ and 0 links if αrαs < κ.

(Proposition 3) Denote vs = βs − gs, vr = βr − gr.

w + c =(αrαs ◦ (vs + vr) + 0)

E[w] = αrαs (vs + vr)− c

Var[w] = αrαs (1− αrαs) (vs + vr)
2

Some algebra yields that in the presence of interventions

w′ + 2c = α2
sαr ◦ (2vs + 2vr)⊕ 2(1− αs)αsαr ◦ (vr − βr + vs)

⊕ (1− αs)
2αr ◦ 0⊕ (1− αr) ◦ 0

E[w′] = 2αsαr (vs + vr − (1− αs)βr)− 2c

Var[w′] = 2αrαs (1− αs)
[
(vs + vr)

2

+ (1− 2(1− αs)αs) βr + 2 (2αs − 1) βr (vr + vs)
]

+ 4αr (1− αr)α
2
s (vs + vr − (1− αs)βr)

2

Then by rearranging terms we get

Var[w′]− Var[w] = (1 + 2αs − 3αsαr) (vs + vr)
2+

+ 2 (1− αs) (1− 2αrαs (1− αs)) βr − 4 (1− αs) (1− 2αrαs) (vr + vs) βr

> 0 ⇐= (1 + 2αs − 3αsαr) (1− 2αrαs (1− αs)) > 2 (1− αs) (1− 2αrαs)
2

Denote x = αrαs and y = 1− αs. Then

Var[w′]− Var[w] > 0 ⇐=

Q[x; y] ≡ − (2y)x2 + x
(
−3 + 4y2 + 2y

)
+ (3− 4y) > 0

Q is a concave quadratic in x. The end points for x are given by x = αrαs ∈
[0, α2

s] = [0, (1− y)2]. Given that y = 1− αs < 0.5, at both end points x = 0

and x = (1− y)2, Q[0; y] and Q[(1− y)2 ; y] are positive. So Q[x; y] is positive.
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The difference in mean is

E[w′]− E[w] = αsαr (vs + vr − 2(1− αs)βr)− c

which can be positive or negative. Pick any αs > 0.5, any αr < αs, any
βs > vs > βr − 2vr > 0, and let c = αsαr (vs + vr − 2(1− αs)βr) − x. (Note
that E[w′]− E[w] = x) This clearly implies all parametric conditions except
αrαs >

c
vs

> αrα
2
s. Note

αrαs >
αsαr (vs + vr − 2(1− αs)βr)− x

vs
> αrα

2
s

⇐⇒ 0 < 2βr −
vr

(1− αs)
+

x

(1− αs)
< vs

Then by assuming
0 < 2βr −

vr
(1− αs)

< vs

x can have positive or negative sign. For example, αs > 0.5, αr < αs, βs >

vs > βr > 0 and vr < min
{

1
2
, 2 (1− αs)

}
βr satisfies all conditions.

A.2 Epidemics and protective measures

(Proposition 4) The payoff to a b-type from having no connection is V0 = −κη.
The payoff to a b-type from being connected to aj if aj has no other connection
is V0 + Vj where Vj = vj − 1 − κ(1 − η)τη. The payoff to a b-type from
being connected to aj if aj has one more connection is V0 + Vj − ∆ where
∆ = κ(1− η)τ(1− η)ητ .

It is easy to see that the stability is characterized as follows. V1 < 0, there are
no links. If V1 > 0 > max {V2, V1 −∆}, then one connected to a1, the other
no connections. If V2 = max {V2, V1 −∆} > 0, then one to a1 one to a2. If
V1 − ∆ = max {V2, V1 −∆} > 0, then both connected to a1. Regarding m,
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these bounds correspond to

Vi < 0 ⇐⇒ m∗
i ≡

vi − 1

κ(1− η)ητ0
< m

V1 −∆ < 0 ⇐⇒ m∗ ≡

√
1 + 4v1−1

κη
− 1

2(1− η)τ0
< m

V1 −∆ < V2 ⇐⇒ m∗∗ ≡
√

v1 − v2
κη(1− η)2τ 20

< m

Then the conditions are: If m > m∗
1, there are no links. If m∗

1 > m >

max {m∗
2,m

∗}, then one connected to a1, the other no connections. If m∗
2 >

m > m∗∗, then one to a1 one to a2. If min {m∗∗,m∗} > m, then both connected
to a1. Note

m∗
2 > m > m∗ ⇐⇒ V2 > 0 > V1 −∆ =⇒ V2 > V1 −∆ ⇐⇒ m > m∗∗

meaning m∗
2 > m∗ =⇒ m∗ > m∗∗ by picking m = m∗ + ϵ. Also,

m∗
2 < m < m∗ ⇐⇒ V2 < 0 < V1 −∆ =⇒ V2 < V1 −∆ ⇐⇒ m < m∗∗

meaning m∗
2 < m∗ =⇒ m∗ < m∗∗by picking m = m∗ − ϵ. So we have either

m∗
2 > m∗ > m∗∗ or m∗

2 < m∗ < m∗∗.

Consider m∗
2 < m∗ < m∗∗. If m > m∗

1, there are no links. If m∗
1 > m > m∗,

then one connected to a1, the other no connections. If m∗ > m, then both
connected to a1.

Next consider m∗
2 > m∗ > m∗∗. If m > m∗

1, there are no links. If m∗
1 > m > m∗

2,
then one connected to a1, the other no connections. If m∗

2 > m > m∗∗, then
one to a1 one to a2. If m∗∗ > m, then both connected to a1.

Thus by defining m1 ≡ m∗
1, m2 ≡ max{m∗

2,m
∗} ≤ m3 ≡ min {m∗∗,m∗}, we

complete the proof.

(Proposition 5) When both b-types are connected to the same a-type, the
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number of infections X, its mean, and its variance are

X = B[1, η] +
[ (

η3 + η2 (1− η) (4− τ) τ + 3 (1− η)2 ητ 2
)
◦ 3

⊕
(
η2 (1− η) (1− τ) (3− τ) + 4η (1− η)2 τ (1− τ)

)
◦ 2

⊕
(
η (1− η)2 (1− τ) (3− τ)

)
◦ 1⊕ (1− η)3 ◦ 0

]
E[X] = η(4 + τ(1− η)(4 + (2− 3η)τ))

Var[X] = (1− η)η

(
12τ(τ + 1) + 4− ητ

(
τ
(
(2− 3η)2(1− η)τ 2

+ 8(1− η)(2− 3η)τ + 45− 34η
)
+ 16

))

When b-type agents are connected to separate a-type agents

X =
[(
η2 + 2η(1− η)τ

)
◦ 2⊕ (2η(1− η)(1− τ)) ◦ 1⊕ (1− η)2 ◦ 0

]
+
[(
η2 + 2η(1− η)τ

)
◦ 2⊕ (2η(1− η)(1− τ)) ◦ 1⊕ (1− η)2 ◦ 0

]
E[X] = 4η (1 + (1− η)τ)

Var[X] = 4η(1− η)
(
1 + (3− 4η) τ + 2η(1− η)τ 2

)
When only one b-type agent is connected to an a-type agent, and the others
have no connections,

X =
[(
η2 + 2η(1− η)τ

)
◦ 2⊕ (2η(1− η)(1− τ)) ◦ 1⊕ (1− η)2 ◦ 0

]
+ B[2, η]

E[X] = 2η (2 + (1− η)τ)

Var[X] = 2η(1− η)
(
2 + (3− 4η) τ + 2η(1− η)τ 2

)
When there are no connections, the X is B[4, η]. The expectation is 4η. The
variance is 4η(1− η).

Recall the proof of Proposition 4. Focus on the case of m∗
2 > m∗ > m∗∗. As m

goes down, at m = m1 = m∗
1, the network switches from empty to having one

link. Expectation and variance clearly increase. At m = m2 = m∗
2, the network
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switches from one connection to two separate connections. Then expectation
and variance change by

∆E[X] = [4 (η + (1− η)τη)]− [2 (2η + (1− η)τη)] = 2(1− η)τη > 0

∆Var[X] =
[
4(1− η)

(
η + (3− 4η) τη + 2(1− η)τ 2η2

)]
−
[
2(1− η)

(
2η + (3− 4η) τη + 2(1− η)τ 2η2

)]
= 2(1− η)

(
(3− 4η) τη + 2(1− η)τ 2η2

)
> 0

At m = m3 = m∗∗ expectation and variance change by

∆E[X] = η(4 + τ(1− η)(4 + (2− 3η)τ))− 4
(
η + (1− η)τ 2η

)
= (1− η)(2− 3η)τ 2η > 0

∆Var[X] = (1− η)η

(
12τ(τ + 1) + 3− ητ

(
τ
(
(2− 3η)2(1− η)τ 2

+ 8(1− η)(2− 3η)τ + 45− 34η
)
+ 16

))
+ η(1− η)

− 4η(1− η)
(
1 + (3− 4η) τ + 2η(1− η)τ 2

)
> 0 ⇐⇒

− (2− 3η)2τ 4η2 + 8(2− 3η)τ 2η +
η (12− 53η + 42η2)

1− η
> 0

where the last inequality holds by η < 1/4 and τ 2η > 0.

Next consider m∗
2 < m∗ < m∗∗. At m = m∗

1, expectation and variance clearly
increase. At m2 = m1 = m∗, network switches from one link to both b-type
agents having a connection with a1. Then expectation and variance change by
the sum of the two ∆Exp and ∆Var terms above, which are both positive. So
both changes are positive.

A.3 Supply chains and subsidies

(Proposition 6) Take u and consider Du = {d}. Conditional on good shocks
and being supplied, the downstream firm has ex-post payoff −c + pD from
production, so it produces if supplied. The supplier u has interim payoff
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−k + δpU > 0 from production so it produces and supplies.

Consider Du = D. Conditional on good shocks and being supplied, d has
ex-post payoff −c+ pD. The supplier u can produce 1 or 2. If it produces 1,
it has interim payoff −k + 2δ(1− δ)pU . If it produces 2, it has interim payoff
−2k + (δ2 + 2δ(1− δ)) pU . Then it produces 1 if and only if k > δ2pU .

Then under k < δ2pU , both downstream firms choose u1 as αu1 > αu2 . Under
k > δ2pU , if both downstream firms choose u1 they each have ex-ante payoff
αu1δ

(
1− δ + δ

2

)
(−c+ pD). If they choose separate suppliers, the one with

smaller payoff has ex-ante payoff αu2δ (−c+ pD). Then they choose separate
suppliers if and only if αu2

αu1
> 1− δ + δ

2
.

(Proposition 7) The subsidies are injected into the firms, which are than paid
to other non-modeled agents in the economy who produce the inputs at cost
eu/d. The subsidies are then transfer from taxpayers to producers of external
inputs. Given ed = 0 and eu = ku, welfare is given by

∑
d∈D pqd −

∑
u∈U kuqu.

Since k′ > p, w is maximized by qd = 1 if kud
= k and qd = 0 otherwise. The

minimal subsidies that implement this outcome is sd = c′ − pD if cd = c′, which
induces d to produce, and all other subsidies are 0. Then an upstream firm u

with two downstream buyers and a good shock has payoff qu (−k + pU) from
producing qu, so it produces 2. This means both downstream are supplied
conditional on their supplier getting a good shock so they both choose u1 as
αu1 > αu2 .

(Proposition 8) In the absence of interventions,

w = (αu1δ ◦ (p− k)⊕ αu1 (1− δ) ◦ (−k)⊕ (1− αu1) ◦ 0)

+ (αu2δ ◦ (p− k)⊕ αu2 (1− δ) ◦ (−k)⊕ (1− αu2) ◦ 0)

E[w] = (αu1 + αu2) (δp− k)

Var[w] = αu1δ (1− αu1δ) p
2 + αu1(1− αu1)k

2 − 2δαu1(1− αu1)pk

+ αu2δ (1− αu2δ) p
2 + αu2(1− αu2)k

2 − 2δαu2(1− αu2)pk

31



In the presence of interventions,

w′ = αu1 ◦ 2(p− k)⊕ (1− αu1) ◦ 0

E[w′] = 2αu1(p− k)

Var[w′] = αu1 (1− αu1) 4(p− k)2

Clearly E[w′] > E[w]. Let α ≈ αui
. Then

Var[w′] > Var[w] ⇐⇒ αu1 (1− αu1) 4(p− k)2 >

αu1δ (1− αu1δ) p
2 + αu1(1− αu1)k

2 − 2δαu1(1− αu1)pk

+ αu2δ (1− αu2δ) p
2 + αu2(1− αu2)k

2 − 2δαu2(1− αu2)pk

⇐⇒
(
2− δ

1− αδ

1− α

)
+

(
k

p

)2

− (4− 2δ)

(
k

p

)
> 0 ⇐= 1− δ

2 (1− δ)
> α

A.4 Derivatives and bailouts

(Proposition 9) We first find the expected payoffs for possible network
structures. Remember lc > 1 + p meaning that the commercial banks’ illiquid
assets never bind the possible payments to depositors.

If ck does not invest, it has payoff Vc,∅ ≡ λclc. If it invests and does not buy
insurance, it has payoff Vc,0 ≡ λclc + σc (rc − 1)− (1− σc)λc. If n does not sell
insurance it has payoff Vn,0 ≡ λnln.

If only one commercial bank buys insurance, say ck, it has payoff

Vc,1 ≡ λclc + σc (rc − 1− p)

+ (1− σc)σn

[
(min {p′, prn + ln} − 1− p)

+ − (1 + p−min {p′, prn + ln})+ λc

]
+ (1− σc) (1− σn)

[
min {p′, ln} − (1 + p−min {p′, ln})+ λc

]
= λclc + σc (rc − 1− p) + (1− σc)σn (p

′ − 1− p)

− (1− σc) (1− σn) (1 + p− ln)λc
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and n has payoff

Vn,1 ≡ λnln + σnσcrnp

+ σn (1− σc)
[
(prn − p′)

+ −min
{
(p′ − prn)

+
, ln

}
λn

]
+ (1− σn)σc [0] + (1− σn)(1− σc) [−min {p′, ln}λn]

= λnln + σn (rnp− (1− σc) p
′)− (1− σn)(1− σc)lnλn

If both commercial banks buy insurance, they each have payoff

Vc,2 ≡ λclc + σc (rc − 1− p)

+ (1− σc)σnσc

[
(min {p′, 2prn + ln} − 1− p)

+ − (1 + p−min {p′, 2prn + ln})+ λc

]
+ (1− σc)

2σn

[
(min {p′, prn + ln/2} − 1− p)

+ − (1 + p−min {p′, prn + ln/2})+ λc

]
+ (1− σc)(1− σn)σc

[
(min {p′, ln} − 1− p)

+ − (1 + p−min {p′, ln})+ λc

]
+ (1− σc)(1− σn)(1− σc)

[
(min {p′, ln/2} − 1− p)

+ − (1 + p−min {p′, ln/2})+ λc

]
= λclc + σc (rc − 1− p) + (1− σc)σn (p

′ − 1− p)

− (1− σc)(1− σn)σc (1 + p− ln)λc − (1− σc)
2(1− σn) (1 + p− ln/2)λc

whereas n has payoff

Vn,2 ≡ λnln + σnσ
2
crnp

+ 2σnσc(1− σc)
[
(2prn − p′)

+ −min
{
(p′ − 2prn)

+
, ln

}
λn

]
+ σn(1− σc)

2
[
2 (prn − p′)

+ −min
{
2 (p′ − prn)

+
, ln

}
λn

]
+ 2 (1− σn)σc(1− σc) [−min {p′, ln}λn]

+ (1− σn) (1− σc)
2 [−min {2p′, ln}λn]

= λnln + 2σn (prn − (1− σc)p
′)− (1− σn) (1− σ2

c )lnλn
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Stable network. Recall

A ≡ σn (rnp− (1− σc) p
′)

(1− σn)(1− σc)λn

Then some algebra shows

Vn,2 > Vn,1 ⇐⇒ A

σc

> ln

Vn,1 > Vn,0 ⇐⇒ A > ln

Recall
B ≡ 1 + p− (1− σc)σn (p

′ − 1− p)− σcp

(1− σn)(1− σc)λc

− 1

1− σn

Then some algebra shows

Vc,0 > Vc,2 ⇐⇒ 2

1 + σc

B > ln

Vc,0 > Vc,1 ⇐⇒ B > ln

Then the stable network is given by the following table:

ln < B B < ln < 2
1+σc

B 2
1+σc

B < ln

ln < A no links one link two links
A < ln < A

σc
no links one link one link

A
σc

< ln no links no links no links

(Proposition 10)

Optimal transfers. If a commercial bank ck does not have insurance and its
project fails, it receives transfer xc = 1 since λc > κ. The expected payoff of ck
is then

V ′
c,0 ≡ λclc + σc (rc − 1)− (1− σc) (p+ x− 1− p)

= λclc + σc (rc − 1)
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Consider the case of one commercial bank ck having insurance and focus on ck

and n. Conditional on a realization of shocks, let n have en ∈ {rn, 0} return
and c have ec ∈ {rc, 0} return. Suppose n has dn ∈ {0, p′} debt to c and c has
dc = 1 + p debt to depositors. Without any transfers, ex-post payoffs are

vn,1 = λnln + (en − dn)
+ −min

{
(dn − en)

+ , ln
}
λn

vc,1 = λclc + (ec +min {dn, en + ln} − dc)
+

− (dc − ec −min {dn, en + ln})+ λc

Under transfers xn to n and xc to c we have

v′n,1 = λnln + (xn + en − dn)
+ −min

{
(dn − en − xn)

+ , ln
}
λn

v′c,1 = λclc + (xc + ec +min {dn, xn + en + ln} − dc)
+

− (dc − xc − ec −min {dn, xn + en + ln})+ λc

Since λc > κ, optimal xc given xn is

xc = (dc − ec −min {dn, xn + en + ln})+

Then

v′n,1 = λnln + (xn + en − dn)
+ −min

{
(dn − en − xn)

+ , ln
}
λn

v′c,1 = λclc +
(
(dc − ec −min {dn, xn + en + ln})+ + ec +min {dn, xn + en + ln} − dc

)+
= λclc + (ec +min {dn, xn + en + ln} − dc)

+

So welfare from the insured commercial bank and the investment bank given
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xn is

w(xn) ∝(xn + en − dn)
+︸ ︷︷ ︸

w1(xn)

+ (ec +min {dn, xn + en + ln} − dc)
+︸ ︷︷ ︸

w2(xn)

−min
{
(dn − en − xn)

+ , ln
}
λn︸ ︷︷ ︸

w3(xn)

− xnκ︸︷︷︸
w4(xn)

− (dc − ec −min {dn, xn + en + ln})+ κ︸ ︷︷ ︸
w5(xn)

The possible terms with xn in this expression from each summand are +xn, +xn,
+λnxn, −κxn, and −κxn. In terms of the coefficients of xn, if w1(xn) ∝ xn, then
w2(xn) ∝ 0, w4(xn) ∝ 0,w5(xn) ∝ −κxn. Then w ∝ −(2κ− 1)xn, decreasing
in xn. If w1(xn) ∝ 0 and w2(xn) ∝ xn, then w3(xn) ∝ 0 and w5(xn) ∝ 0. Then
w(xn) ∝ −(κ − 1)xn, decreasing in xn. If w1(xn) ∝ 0 and w2(xn) ∝ 0, then
w(xn) ∝ {−2κxn,−(κ− λn)xn} is decreasing in xn under κ < λn. Hence w is
decreasing in xn for κ < λn. So when κ < λn, optimally

xn = 0,

xc = (dc − ec −min {dn, en + ln})+

This is, under κ < λn, ck is bailed out directly and no transfers are made to n.
Then

v′n,1 = λnln + (en − dn)
+ −min

{
(dn − en)

+ , ln
}
λn

v′c,1 = λclc + (ec +min {dn, en + ln} − dc)
+

and so the expected payoffs are

V ′
n,1 = Vn,1

V ′
c,1 = λclc + σc (rc − 1− p) + (1− σc)σn (min {p′, prn + ln} − 1− p)

+

+ (1− σc) (1− σn)min {p′, ln}

= λclc + σc (rc − 1− p) + (1− σc)σn (p
′ − 1− p) + (1− σc) (1− σn) ln
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Under λn > κ it is already optimal to bailout n to save its own liquidation
costs to maximize

vn,1 = (xn + en − dn)
+ −min

{
(dn − en − xn)

+ , ln
}
λn

by setting xn = (dn − en)
+. So when λn > κ, optimally

xn = (dn − en)
+ ,

xc = (dc − ec − dn)
+ = 0

Note that in the specific parameters of the model, dc − ec − dn ≤ 1+ p− p′ < 0

and so xc = 0. This is, the commercial banks never need bailouts.

Then

v′n,1 = λnln +
(
(dn − en)

+ + en − dn
)+

= λnln + (en − dn)
+

v′c,1 = λclc + (ec + dn − dc)
+

Then expected payoffs are

V ′
n,1 = λnln + σn (rnp− (1− σc) p

′)

V ′
c,1 = λclc + σc (rc − 1− p) + (1− σc)σn (p

′ − 1− p)

Next consider the case wherein both commercial banks have insurance. Con-
ditional on a realization of shocks, let n have en ∈ {rn, 0} return and ct have
ect ∈ {rc, 0} return for t = 1, 2. Suppose n has dnt ∈ {0, p′} debt to ct and ct

has dc = 1 + p debt to depositors. Denote dn = dn1 + dn2. Then

v′n,2 = λnln + (xn + en − dn)
+ −min

{
(dn − en − xn)

+ , ln
}
λn

v′c,2,t = λclc +

(
xct + ect +min

{
dnt,

dnt
dn

(xn + en + ln)

}
− dc

)+

−
(
dc − xct −min

{
dnt,

dnt
dn

(xn + en + ln)

})+

λc
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Then by λc > κ optimally

xct =

(
dc − ect − dntmin

{
1,

xn + en + ln
dn

})+

Then

w ∝ (xn + en − dn)
+ +

∑
t

(
ect + dntmin

{
1,

xn + en + ln
dn

}
− dc

)+

−min
{
(dn − en − xn)

+ , ln
}
λn

− κxn − κ
∑
t

(
dc − ect − dntmin

{
1,

xn + en + ln
dn

})+

The same logic as before shows that xn = 0 under λn < κ. So12

xn = 0,xct =

(
dc − ect − dntmin

{
1,

en + ln
dn

})+

Then

v′n,2 = λnln + (en − dn)
+ −min

{
(dn − en)

+ , ln
}
λn = vn,2

v′c,2,t = λclc +

(
ect + dntmin

{
1,

en + ln
dn

}
− dc

)+

12If λn > κ, then n would be bailed out as before, and commercial banks would receive
payments that just suffice:

xn = (dn − en)
+

xct =

(
dc − ect − dnct min

{
1,

(dn − en)
+
+ en + ln

dn

})+

38



This makes the expected payoffs

V ′
n,2 = Vn,2

V ′
c,2 = λclc + σc (rc − 1− p)

+ (1− σc)σnσc (min {p′, 2prn + ln} − 1− p)
+

+ (1− σc)σn(1− σc)

(
min

{
p′, prn +

ln
2

}
− 1− p

)+

+ (1− σc)(1− σn)σc (min {p′, ln} − 1− p)
+

+ (1− σc)(1− σn)(1− σc)

(
min

{
p′,

ln
2

}
− 1− p

)+

= λclc + σc (rc − 1− p) + (1− σc)σn (p
′ − 1− p)

When λn > κ, as before, n is bailed out for its own sake and so

xn = (dn − en)
+ ,

xct = (dc − ect − dnt)
+ = 0

Note that dc − ect − dnt ≤ 1 + p− p′ < 0 so xct = 0. This is, commercial banks
never need bailouts. Then

v′n,2 = λnln + (en − dn)
+

v′c,2,t = λclc + (ect + dnt − dc)

Then the expected payoffs are

V ′
n,2 = λnln + 2σn (rnp− (1− σc) p

′)

V ′
c,2 = λclc + σc (rc − 1− p) + (1− σc)σn (p

′ − 1− p)

39



Stable network. Combining the cases, under λn > κ

V ′
n,0 = λnln

V ′
c,0 = λclc + σc (rc − 1)

V ′
n,1 = Vn,1 = λnln + σn (rnp− (1− σc) p

′)− (1− σn)(1− σc)lnλn

V ′
c,1 = λclc + σc (rc − 1− p) + (1− σc)σn (p

′ − 1− p) + (1− σc) (1− σn) ln

V ′
n,2 = Vn,2 = λnln + 2σn (prn − (1− σc)p

′)− (1− σn) (1− σ2
c )lnλn

V ′
c,2 = λclc + σc (rc − 1− p) + (1− σc)σn (p

′ − 1− p)

Denote
C =

(1− σc)σn (p
′ − 1− p)− σcp

(1− σc) (1− σn)

Some algebra shows V ′
c,1 > V ′

c,2 and V ′
c,0 > V ′

c,2 ⇐⇒ 0 > C and V ′
c,0 >

V ′
c,1 ⇐⇒ 0 > C + ln. Then the network formed is described by

ln < −C 0 < −C < ln 0 < C

ln < A no links one link two links
A < ln < A

σc
no links one link one link

A
σc

< ln no links no links no links

Under λn < κ,

V ′
n,0 = λnln

V ′
c,0 = λclc + σc (rc − 1)

Vn,1 = λnln + σn (rnp− (1− σc) p
′)

Vc,1 = λclc + σc (rc − 1− p) + (1− σc)σn (p
′ − 1− p)

V ′
n,2 = λnln + 2σn (rnp− (1− σc) p

′)

V ′
c,2 = λclc + σc (rc − 1− p) + (1− σc)σn (p

′ − 1− p)

Clearly V ′
c,2 = V ′

c,1 > V ′
c,0 and V ′

n,2 > V ′
n,1 > V ′

n,0. So the network formed
involves two insurance contracts.
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(Proposition 11) In the absence of interventions

w ∝
[
σcσn ◦ (Rn + rc)⊕ σc(1− σn) ◦ (rc)⊕ (1− σc)σn ◦ (Rn)

⊕ (1− σc) (1− σn) ◦ (−λnln − λc (1 + p− ln))

]
+ [σc ◦ (rc)⊕ (1− σc) ◦ (−λc)]

In the presence of interventions

w′ ∝ σ2
cσn ◦ (2Rn + 2rc)

⊕ 2σc (1− σc)σn ◦ (2Rn + rc)⊕ (1− σc)
2 σn ◦ (2Rn)

⊕ σ2
c (1− σn) ◦ (2rc)⊕ 2σc (1− σc) (1− σn) ◦ (rc − λnln − κ (1 + p− ln))

⊕ (1− σc)
2 (1− σn) ◦ (−λnln − 2κ (1 + p− ln/2))

By λn ? κ ? λc

w ∝
[
σcσn ◦ (Rn + rc)⊕ σc(1− σn) ◦ (rc)⊕ (1− σc)σn ◦ (Rn)

⊕ (1− σc) (1− σn) ◦ (− (1 + p)κ)

]
+ [σc ◦ (rc)⊕ (1− σc) ◦ (−κ)]

and

w′ ∝ σ2
cσn ◦ (2Rn + 2rc)

⊕ 2σc (1− σc)σn ◦ (2Rn + rc)⊕ (1− σc)
2 σn ◦ (2Rn)

⊕ σ2
c (1− σn) ◦ (2rc)⊕ 2σc (1− σc) (1− σn) ◦ (rc − κ (1 + p))

⊕ (1− σc)
2 (1− σn) ◦ (−2κ (1 + p))
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Then

E[w] = σnRn + 2σcrc − (1− σn) (1− σc) (1 + p)κ− (1− σc)κ

E[w′] = σn2Rn + 2σcrc − (1− σn) 2 (1− σc) (1 + p)κ

E[w′]− E[w] = σnRn − (1− σc) [(1− σn) (1 + p)− 1]κ

= σnRn − (1− σc) (κ
′′ − κ)

By the conditional variance formula

V ar[w] = σc (1− σc) (rc + κ)2

+ σn (1− σn)R
2
n + σc (1− σc) r

2
c

+ (1− σc) (1− σn) (1− (1− σc) (1− σn)) ((1 + p)κ)2

+ (σnRn + σcrc) (1− σc) (1− σn) (1 + p)κ

V ar[w′] = σn

[
2σc (1− σc) r

2
c

]
+ (1− σn)

[
2σc (1− σc) (rc + κ (1 + p))2

]
σn (1− σn) [(2Rn + 2σcrc) + (2σcrc − 2 (1− σc)κ (1 + p))]

Then by rearranging terms we have

V ar[w′]− V ar[w] = σn (1− σn)
[
4 (Rn + 2σcrc − κ′′)

2 −
(
R2

n +Rnκ
′ + κ′′2)]

+ (1− σn)σc (1− σc)
[
2 (rc + κ′)

2 −
(
2r2c + rcκ

′ + κ′2)]− σc (1− σc)
[
(rc + κ)2 − r2c

]
= σc (1− σc) rc

[
16σn (1− σn) (Rn − κ′′)σc + 3κ′′ − 2κ+ o(

1

rc
)

]
By B < ln < 2

1+σc
B, B > 0. Then by C > 0, (1 + p) (1− σn) > 1. Then

κ′′ > 1 so 3κ′′ − 2κ > 0. Then if Rn > κ′′, V ar[w′]− V ar[w] > 0 for large rc.
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