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1 Introduction

The recent global financial crisis had its epicenter at the malfunctioning of derivative markets,
most notably credit default swaps (CDS) that were insufficient to cover the wave of potential
defaults channeled through a large and complex network of derivative exposures among finan-
cial counterparties. This experience motivated the implementation of a flurry of regulations
oriented towards putting constraints on the buildup of financial systemic risk and the likelihood
of financial crises.

Two of the most salient objectives of these new regulations involved (i) a greater oversight
over derivatives transactions, particularly those executed via over-the-counter (OTC) markets
(this is, bilateral transactions of non-standard derivatives) and (ii) a greater level of transparency
about these transactions. A controversial tool created to tackle both objectives was increasing
the risk weights applicable towards computing capital requirements of derivatives transacted in
relatively less transparent OTC markets, whereas reducing the risk weights applicable to those
cleared through a relatively more transparent central counterparty clearing house (CCP).1

While these regulations have the explicit motivation of changing the structure of financial
exposures, reducing their complexity, and inducing less contagion, we lack a tractable way to
endogenize the network structure in response to environmental and regulation changes. In this
paper, we construct an endogenous network model of interbank derivative exposures in which
banks value the opacity offered by OTC contracts, but do not internalize their systemic danger
via coordination failures.

In our model, banks house bankers who sign derivative contracts on behalf of their banks.
Random pairs of bankers meet, and there are gains for them to sign derivative contracts for
insurance purposes, for instance, because of asymmetric risk positions. If the derivative contract
is observable, the bank “buying” insurance reveals that it holds a riskier asset than the bank
“selling” insurance. This revelation may have implications for the bank’s funding possibilities if
outside investors are less inclined to fund riskier banks (or they are willing to fund it by charging
a corresponding higher rate). With a transparent contract, the bank in need of insurance faces
a trade-off insurance-funding that discourages efficient use of insurance in the market. This
captures an efficiency gain of opacity: it implements insurance without fear of affecting the
allocation of funds in the economy. As long as a derivative traded in OTC markets is more
opaque than a derivative traded via CCPs, as argued by regulators, there is an efficiency loss in
using CCPs. This view rationalizes the scarce use of CCPs before recent regulatory changes.

Facing these transparency costs of clearing and the potential failure to secure financing,
bankers decide whether to sign insurance contracts , and if they do, they decide whether to clear
the contract through a CCP. The aggregation of positions in contracts signed by bankers form

1See BCBS and IOSCO (2015) “Margin requirements for non-centrally-cleared derivatives” Technical report,
BIS and OICU-IOSCO, Basel, Switzerland, for a discussion of this regulatory change.

1



the exposures between banks.
Our paper provides a novel and tractable way to capture changes in the network of financial

exposures in response to changes in the environment and regulations. Instead of studying the
strategic considerations of large agents (banks) to form their network of connections, we study the
incentives of their atomistic members, who individually do not internalize their role in shaping
the network but collectively end up determining its structure.

These exposures can lead to contagion across banks that is self-fulfilling, which we call a
coordination failure. To fix ideas about the possibility of coordination failures in the absence of
CCPs, take three banks A, B and C, that have developed a network of exposures. Assume that
A is a net insurance seller to B, B to C and C to A, all for the same net amounts. If A can
not pay B, then B can not pay C, then C can not pay A, then A can not pay B. Coordination
failures trigger a self-fulfilling collapse on derivative networks. In the presence of central clearing,
however, the implicit multilateral netting through bilateral netting with the CCP eliminates all
exposures, and then the possibility of coordination failures disappears – a benefit of central
clearing that is not internalized by banks and that rationalizes new regulations.

Despite its potential to completely eliminate coordination failures if adopted, widespread
clearing is not mandated but instead induced by applying less risk weights in capital regulation
to contracts that are cleared. In a world with heterogenous banks, however, how this asymmetric
regulation affects the whole network of financial exposures and, ultimately, its stability is un-
clear. Understanding the endogenous reaction of optimal derivative contracts and the network
of financial exposures is the goal of this paper.

We show that large banks operate large volumes of collateral, write many derivative contracts
and tend to position at the core of operations. These banks tend to be less constrained by
regulation and value opacity relative more. We show that insurance buyers in the core do not
clear their exposures, whereas insurance buyers in the periphery do. This asymmetric response
reduces bilateral netting between the core and the periphery. In turn, the CCP becomes post-
regulation heavily exposed to the core. Additionally, exposures within the core are unaffected
as the core can raise sufficient capital to remain unconstrained. Consequently, the cycles in the
core, which are the triggers of coordination failures, persist despite being the most important
target for regulation. Additionally, the exposures to the core increase, primarily by transforming
the exposures of the periphery into exposures of the CCP on the extensive margin and increasing
these exposures on the intensive margin due to relaxed regulation of cleared exposures. This
endogenous reshaping of the network of financial exposures, both in the extensive and intensive
margins may render regulations counterproductive and, at best, irrelevant to curbing financial
fragility.
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Related Literature:
We consider a network formed by infinitesimal agents (bankers) who act on behalf of finite

institutions (banks) and whose individual actions do not have an aggregate impact individually
but do in the aggregate. This approach simplifies the analysis of contagion and, so, the analysis
of network formation. The most notable examples using this method for tractable analysis
of strategic network formation are Erol (2024) and Erol and García-Jimeno (2022). The use
of continuous networks at large in economics is relatively recent. We note the robustness of
our results based on the convergence results established by Erol et al. (2023) and Parise and
Ozdaglar (2023), who show that the outcome of games on growing networks limits the outcome
of the corresponding game played on the limit graphon. We combine these tools to solve the
network anatomy in the extensive margin (who writes derivative contracts with whom) and also
the effects on the intensive margin (how large these contracts are).

The imposition of new regulations in the U.S. and Europe trying to reduce the influence of
OTC derivative markets through incentivizing the use of CCPs has induced renewed literature
on their effects.2 This literature has focused on different relevant aspects. Duffie et al. (2015)
discuss how CCPs affect collateral demand in the system (given the heterogeneity of margin
requirements), which may have important distributional consequences across intermediaries.
Cont and Kokholm (2014) highlight that CCPs may reduce counterparty risk, but at the cost of
reducing netting across asset classes. Part of this literature is also concerned about the resolution
protocols of CCPs in distress and their potential systemic consequences, such as Duffie (2015),
Bignon and Vuillemey (2019), Kuong and Maurin (2024), and Capponi et al. (2019).

Our focus is different. We explore incentives and trade-offs between costs and benefits of
clearing, how regulations affect these tradeoffs, and how the network structure and systemic risk
is changes in response. Low CCP risk weights create a tradeoff between bilateral and multilateral
netting between the core and the periphery. Transparency makes the core avoid clearing of core-
core exposures. The closest to our insight regarding transparency is highlighted in Spatt (2017),
who concludes that transparency should consider liquidity needs and should not increase trading
costs. We additionally highlight that simultaneous “success” in moving the periphery to clearing
creates adverse unintended consequences in terms of systemic risk by exposing the CCP to the
core, even in the hypothetical absence of a need to manage and govern CCPs’ risks. Duffie and
Zhu (2011) explores a substitution between bilateral netting and multilateral netting but they
do not study incentives, the network structure, or systemic risk.

The literature on the role of transparency of CCPs, the lack thereof in OTC markets, is,
however, scarcer. Babus and Kondor (2018) discuss how information flows through the network
in OTC markets and how it affects trading, while Glode and Opp (2023) show that OTC markets

2A recent legal literature, such as McBride (2010) and Allen (2012), have also studied the effects of CCPs and
their regulation.
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can be rationalized in spite of larger frictions than centralized markets when traders’ expertise
is endogenous. In contrast to this literature, here we focus on the transparency of the contracts
and its potential to reveal information about traders’ types and assets’ types. This is more in line
with the positive view of opacity highlighted in Dang et al. (2017), who rationalize the banking
opaque operations, and Gorton et al. (2025), who rationalize opaque and complex financial
exposures as a way to increase funding capacities.

Our work is also connected to recent literature studying the functioning and the fragility of
OTC markets, partly initiated by a search-theoretic approach applied to asset markets, such
as Duffie et al. (2005) and Lagos and Rocheteau (2009). Afonso and Lagos (2015), study the
functioning of federal fund markets by applying a search model to study how two banks get
together and bargain bilaterally. Following this tradition, Atkeson et al. (2015) introduces
entry and exit in OTC derivative markets and study the characteristics of the ensuing network.
Even more recently, Hugonnier et al. (2020) study the role of heterogeneity and of search and
bargaining frictions in these markets. In contrast with this work, instead of studying how banks
in a network negotiate, we study the optimal contract of its members and what it implies for
the aggregate observed network of financial exposures.

Finally, our paper is also a contribution to the recent literature on the unforeseen effects of
government regulations and interventions to financial networks, such as Erol and Ordonez (2017)
in terms of capital regulations and Anderson et al. (2019) in terms of public liquidity provision.
In D’Erasmo et al. (2025) we show empirically, using confidential data, that in response to recent
regulations inducing CCPs in the United States, there was an asymmetric response consistent
with the implications of this model.

Section 2 describes the model. Section 3 characterizes the equilibrium network and the opti-
mal insurance contracts in the absence of regulations. Section 4 introduces capital requirements
and shows how the networks of financial exposures respond to changes in regulation. Section
5 introduces heterogeneity among banks, which displays a core-periphery structure and shows
how capital requirements reshape the network and affect contagion. Section 6 concludes.

2 Model

2.1 Environment

In what follows, we maintain the following notation and exposition choices. All random vari-
ables are independent unless noted otherwise. Parametric assumptions made in the text are
maintained from the point they are stated. Assumptions made inside results only apply to those
results. When there is no risk of confusion, subscripts and superscripts are dropped to highlight
the variables of interest and to reduce clutter.
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Agency structure. There is a finite set of banks, each denoted by u ∈ B. Each bank’s
equity is owned by a representative shareholder, who can borrow from a representative creditor
to finance a set of projects. Each bank houses a mass of bankers, each denoted by i, with bi

denoting i’s bank. Each banker manages one of the bank’s projects and additionally obtains,
through the bank, access to an investor to finance an investment as a joint venture.

Investments are subject to an idiosyncratic shock, which introduces the need for insurance.
Since investments are non-pledgeable, such insurance has to be backed by collateral. Projects are
subject to an aggregate shock and so uninsurable, but are pledgeable, so can be used as collateral
by bankers to insure against the shocks to investments. Insurance takes place through (deriva-
tive) insurance contracts between two bankers of different banks randomly matched. Bankers
sign investment and insurance contracts on behalf of their banks. Bankers are compensated as
a fraction of the profits they generate for their banks. These insurance contracts will generate
an interbank network of liabilities. Details about projects and investments follow.

Projects. The creditor has deep pockets and lends to u using a debt contract at a market
rate. Each project requires m′ lending to initiate and a banker’s management to mature. For
a project managed by banker i ∈ u, the net rate of return to the bank is (α + ζi)cu −m where
cu is the project’s baseline return, α ∼ U [α, α] is an aggregate shock to projects in economy,
ζi ∼ U [−Z,Z] is an idiosyncratic shock to banker i, and m is the repayment promised to
creditors. The fair value of projects will serve as collateral for bankers.

Investments. Each banker i has access to an investment opportunity that requires 1 unit of
funds to finance. There is an infinite supply of investors that may choose to contact the banker
to provide the funds. If an investor matches with banker i, they are locked in, and we denote the
investor as ni. The investor can, however, walk away from the investment before it matures based
on an outside option that pays a random return wi, and generates utility ωi := VI(wi) ∼ U [0, ω],
for some ω > 0.3 When indifferent, ni uses this outside option. The banker and the investor
observe the outside option after they match but before the project starts.

If financed, i’s investment yields a random return ri ∈ {r, 0} (success or failure) depending
on the quality qi ∈ {0, 1} of the managing banker i (bad or good). The banker i is good with
probability γi. While the banker knows his own quality, the investor does not. The banker i
investment’s success probability is σi = σi0 + qi(σi1− σi0), with σi1 > σi0 > 0 constants. That is,
good bankers are better at investing than bad bankers. We assume the following split of returns
in case of success. A share s ∈ (0, 1) goes to ni, a share s′ < 1 − s goes to banker i, and the
remainder 1− s− s′ goes to the bank. We assume ω∗ := VI(sr) < ω, so there are investors with
outside options high enough not to finance even projects that are certain to succeed.

Insurance needs. Each banker has utility function VB(x) = x+ θmin{β, x} where θ, β > 0
are constants. This utility function displays global risk aversion around the “breaking point” β

3The corresponding distribution of wi has CDF Fw(wi) = VI(wi)ω−1 for all wi ∈ [0, V −1
I (ω)].
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and local risk neutrality.4 Risk aversion creates incentives for diversification, up to an extent
determined by the steepness θ, which can also be seen as a measure of risk aversion. Under
this utility function, there are potential insurance gains if a banker has less than β return and
another banker has more than β. We assume rs′ > 2β so that returns to two bankers from one
successful investment is sufficient to give both β with a suitable insurance contract.

Insurance contracts. Some pairs of bankers are matched bilaterally for an opportunity to
insure each other. The matching protocol is described in detail in Appendix 3.2.3. The insur-
ance contracts are signed on behalf of the banks and secured by their collateral. A (derivative)
insurance contract (dij, dji) between two bankers i and j is contingent on the outcomes of invest-
ments of i and j. The value dij(r̃i, r̃j) describes the “payment from j to i", this is the liability
of bj (banker j’s bank) and the asset of bi (banker i’s bank) as a function of investment returns
(r̃i, r̃j). A fraction s′′ of the final return from the insurance contracts is accounted towards the
bankers who signed the contract. The remaining share 1−s′′, is retained by the bank. If the pair
does not have a contract, we denote this with (dij, dji) ≡ 0. As bankers aim to achieve β but
their share from insurance is s′′, a banker with an investment failure would require a payment
κ ≡ β/s′′, so to guarantee consuming β.

Each banker in a matched pair decides whether to insure or not. If both bankers decide to
insure, they sign an optimal contract which is defined as a feasible contract that maximizes the
sum of the pair’s expected utilities subject to individual rationality.

Collateral for Insurance. Liabilities in each contract must be fully collateralized. The fair
value of unposted collateral earns the banker ξθs′′ utils of private gain per dollar of unposted
collateral. We call ξ (normalized opportunity) cost of collateral.5

Insurance Platforms Insurance contracts can be channeled through two possible plat-
forms: P ∈ {O,C}. O represents OTC platforms, which are characterized by bilateral con-
tracts (dij, dji). C represents CCP platforms, which are characterized by the intermediation of
a central clearing counterparty, which novate the contract, meaning that the contract (dij, dji)
is replaced with two identical contracts, (diC , dCi) ≡ (dij, dji) between bi and the CCP, and
(dCj, djC) ≡ (dij, dji) between the CCP and bj. These novated contracts are still contingent on
the success of investments of i and j, but the CCP is not a bank and does not have investments.
The CCP simply inserts itself as the counterparty to both of the original counterparties.

When a large number of contracts are novated, the CCP can “clear” complex exposures that
would arise across banks simply in its own balance sheet. Strictly speaking, then, all contracts
are OTC when signed. If a contract is not novated after signing, we say the contract is kept
OTC, and we use OTC exposures for the corresponding exposures between banks.

Investor information. As information about contracts may “leak" to the market, counter-
4The advantages of this specification to study insurance are discussed by Dang et al. (2017).
5The private gains are utils to simplify the contracts. This can be seen as management returns materializing

at a different date.
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parties can revise their insurance decision to conceal information before it leaks. Formally, after
two matched bankers i and j sign a contract, nature determines signals (ιCij, ιOij) ∈ {0, 1}2 and
(ιCji, ιOji) ∈ {0, 1}2, capturing the information that can potentially be inferred by investors about
bankers’ qualities. The signal ιCij is about i’s quality if the contract is novated through the CCP
and ιOij is about i’s quality if the the contract is kept OTC.

The pair i and j both observe (ιCij, ιOij) and (ιCji, ιOji) before settlement. After observing the
signals , the pair (this is both bankers in the joint decision) either novate the contract through
the CCP, keeps the contract OTC, or annuls the contract.6 If the contract is novated, ni observes
ιij = ιCij. If the contract is kept OTC, ni observes ιij = ιOij. If the contract is annulled ni observes
ιij = 1, this is no signal. We call (the observed signal) ιij the investor information regarding i.
The investor can liquidate the investment without cost after observing the signals and updating
his belief about the banker’s type and hence having a better idea of the investment succeeds.

The signal about i’s quality (ιCij, ιOij) is (qi, qi) with probability τOij , and (qi, 1) with probability
τCij > τOij . In words, with probability τOij an insurance contract reveals banker i’s type regardless
of whether it is novated or not, with probability τCij it reveals the type only if novated (in this
case the signal is always 1 if OTC, and hence uninformative). With complementary probabilities,
the signal does not reveal agent i’s quality regardless of the contract platform. This structure
captures the idea that monitoring and transparency attached to novation through a CCP results
in superior information discovery for the market. This signal structure is convenient as, for
a given platform P ∈ {C,O}, τP reflects the level of transparency implied by the use of the
platform.

Payouts absent defaults. For investors, absent defaults, ni gets paid ris or wi (achieving
utility ω∗ or ωi), depending the choice between financing or not (the outside option).

For bankers, if the pair i and j has insurance, i gets paid pi = s′ri+ s′′(dij(ri, rj)−dji(rj, ri)).
If i does not have insurance, he gets paid pi = s′ri. If ni liquidates early, pi = 0. Banker i′s utility
net of management gains is VB(pi) less the cost of collateral ξθs′′(r + max(r̃i,r̃j){dji(r̃j, r̃i)}).

For creditors, they get paid m−m′ per unit of project funded. For shareholders, the share-
holder of bank u retains earnings (α + ζi)cu − m + ri(1 − s) − pi integrated over all bankers.
The creditor and the shareholder are mechanical parts of the model, so we specify their utility
functions only when we study welfare.

Consolidation and netting. Each bank consolidates its on- and off-balance sheet positions:
projects, investments, liabilities to creditors and investors, and derivative insurance contracts.

Bank u’s projects have asset value
´
u
(α + ζi)cudi = αµucu.7 We denote Au = µucu. Bank

u’s projects create liability L′u = mµu to the creditor. The total returns from investments is
Ru =

´
uR
ridi where uR is the set bankers in u investing. The total promised share of return to

6The only role of assuming that bankers observe signals before the market is to avoid early liquidations on
the path of play.

7Note that ζi is not correlated with i’s financing.
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the investors is L′′u = sRu. These are the senior liabilities, adding up to Lu = L′u + L′′u. With
some abuse of notation, we call αAu +Ru senior assets.

Similar integration identifies interbank assets and liabilities. Denote by i∗ the matched banker
for banker i in bank u. Also denote i ∈ uOv if i ∈ u, i∗ ∈ v, and the pair implemented a
contract on OTC. Then bi∗//bi must fulfill the payment of dii∗(ri, ri∗)//di∗i(ri∗ , ri) directly to
bi//bi∗ . Denote i ∈ uCv if the pair implemented a contract on CCP. Then bi∗//bi must fulfill the
payment of dii∗(ri, ri∗)//di∗i(ri∗ , ri) to the CCP, and the CCP must fulfill the payment of the
same amount to bi//bi∗ . The total expected payment promise to bi and by bi are

Dii∗ = E(r̃i,r̃∗i )[dii∗(r̃i, r̃i∗)], Di∗i = E(r̃i∗ ,r̃i)[di∗i(r̃i∗ , r̃i)]

The gross interbank assets arising out of contracts between their bankers are called exposures.
The gross OTC exposure of u to v is Euv and the gross cleared exposure of u to v is EuCv, given
by8

Euv =
ˆ
uOv

Dii∗di, EuCv =
ˆ
uCv

Dii∗di

The gross exposure of u to the CCP is then EuC = ∑
v EuCv. The gross exposure of the CCP to

u is ECu = ∑
v EvCu.

Institutions can have two sided exposures with each other. Opposing two sided exposures
between two given counterparties are eliminated via bilateral netting (a master netting agree-
ment between the institutions). Bilateral netting results in net exposures: the net exposure of
institution f (a bank or the CCP) to f ′ is

E ′ff ′ := 〈Eff ′ − Ef ′f〉

where the notation 〈·〉 is the positive of a number:

〈·〉 = max{0, ·}

Note that netting does not affect equity as x1 − x2 = 〈x1 − x2〉 − 〈x2 − x1〉 for any x1, x2. Also
note that min{E ′ff ′ , E ′f ′f} = 0. This is, after netting, there are no two-sided exposures left.

The collection of these aggregate values with bilaterally netted exposures across all banks is
called the system S:

S = (Au, Ru, Lu, (E ′uC , E ′Cu), (E ′uv)v∈B)u∈B
8In fact, Euv =

´
uOv

d
rir
∗
i

ii∗ di. Under some regularity conditions this is equal to
´
uOv

Dii∗di. We assume such
regularity throughout the paper.
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2.2 Timing.

Stage 1 - Funding and lending: Creditors lend to banks, banks initiate projects and give it
to a banker to manage. Investors match with bankers. Investors’ outside options and bankers’
qualities are drawn.

funding

fund: ni → i,
invest: i→the investment

collateral: i→ ni ⇒

projects
lend: the creditor→ u,
initiate: u→the project,
manage: the project→ i

provis. funding

niB{provisionally
fund, or not}

i↔ ni; i2 ωi;

Figure 1: Funding and lending stage
“2” indicates observing information. “.” indicates choosing an action.

“→” indicates mechanical components (with possibly trivial incentives at the background).

Stage 2 - Insurance and information: Bankers are matched. Matched bankers observe
each others’ quality. Then each pair of matched bankers decide to insure or not. If bankers in
a pair both decide to insure, they sign an optimal contract. Then nature determines signals,
which are observed by the corresponding pairs. Then each pair decides whether to novate their
contract, keep it OTC, or annul it. Upon observing contracts and signals, each investor chooses
to withdraw his funds or not. If an investor withdraws, the corresponding banker liquidates the
investment, repays the investor, and the banker’s insurance contract is annulled.

i, j 2 qi, qj

matching insurance

i, j2{ιPi/j};

novation

investor info: ιPij → ni;

financing

ijB{insure or not};
insure⇒ij →

optimal contract

i↔ j;
ijB{OTC, CCP,

annul} withdr.⇒ i→liquidate,annul
finance: niB{withdr. or not};

Figure 2: Insurance and information stage

Stage 3 - Consolidation and contagion: Banks consolidate their positions. Bilateral
netting is executed. Aggregate shock is realized. Then, liquidations, maturity, and contagion
(as we will describe next) materialize simultaneously. Payments to agents are made as per
contractual promises, using seniority and proportional sharing rules as described.

Au, Ru, Lu,
Euf , Efu

contagion
outcome: S̃α

contagionconsolidation
system S:

Au, Ru, Lu,E ′uf , E ′fu

netting

projects: αAu

aggr. shock

Figure 3: Consolidation and contagion stage
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2.3 Contagion

We follow Eisenberg and Noe (2001) and Acemoglu et al. (2015) to model financial contagion.
Intuitively, the aggregate shock α alters the value of all projects. Depending on the system,
a bank may not be able to repay its promises (to creditors, investors and other banks) if it
receives less return to projects than expected, given the promises obtained from other banks.
This may force the liquidation of projects and investments (akin fire sales), reducing their value
to fractions λA < 1 and λR < 1 respectively, and turning the bank insolvent.9 If a bank defaults,
seniority prioritizes liabilities to creditors and investors first, then interbank liabilities, then
bankers (employees) and finally bankholders. Within each seniority, agents obtain payments
proportional to the original net asset value.

More formally, let E→f be total exposures to institution f ∈ B ∪ {C} (this is, f ′s interbank
liabilities) and E←f total exposures of institution f (this is, f ’s interbank assets):

E→f =
∑

f ′∈B∪{C}
E ′f ′f , E←f =

∑
f ′∈B∪{C}

E ′ff ′

Notice E→C = E←C since a novated contract induces the same exposure to and from the CCP.
After the consolidation, netting, and the realization of the aggregate shock, absent any defaults,
bank u’s equity would be given by

Qu,α = αAu +Ru + E←u − Lu − E→u

When there are defaults, the recovered assets may not be enough to cover the returned liabilities.
Formally, it is possible that

αAu +Ru + E←u︸ ︷︷ ︸
Assets

> Lu + E→u︸ ︷︷ ︸
Liabilities

> λAαAu + λRRu + E←u︸ ︷︷ ︸
Liquidated Assets

This is, u can default simply because it defaults. This is akin to a bank-run. We aim instead to
study banks defaulting because of each other so we focus on self-fulfilling contagion rather than
self-fulfilling bank-runs. For this, we assume away this possible multiplicity involving default,
this is if no default is an equilibrium, we select that equilibrium.

Recovered assets and returned liabilities are determined simultaneously “during” contagion.
Accordingly, we define “intra-contagion” assets and liabilities (we denote these variables with
tildes) through endogenous recovery and return rates (rr). Recovered assets from senior assets
after liquidation or maturity are Ãu,α = rrAu,αAu and R̃u,α = rrRu,αRu. Recovered interbank
assets of u are Ẽ ′uf = rrEf,αE ′uf and returned interbank liabilities of u are Ẽ ′fu = rrEu,αE ′fu. The

9Creditors demand liquidation of investments and investors demand liquidation of projects simultaneously.
Creditors and investors can not coordinate.
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total recovered interbank assets are Ẽ←u = ∑
f Ẽ
′
uf and total returned interbank liabilities are

Ẽ→u = ∑
f Ẽ
′
fu. Returned senior liabilities to the creditor and investors are L̃u,α = rrLu,αLu,α.

Then RAu,α = αÃu,α + R̃u,α + Ẽ←u,α and RLu,α = L̃u,α + Ẽ→u,α.
When there are no defaults, all recovery and return rates are equal to 1.
Defaults are triggered by bad aggregate shocks and low interbank asset recovery. Formally,

bank u is said to default if

Qdef
u,α := αAu +Ru + Ẽ←u,α − Lu − E→u < 0 (1)

This condition uses the original values of liabilities and all assets other than interbank assets.
It is assumed that liabilities are not renegotiated in response to contagion.

Since defaulting banks are forced to liquidate their projects and investments before maturity,
recovery rates are

(rrAu,α, rrRu,α) =

(1, 1) if u does not default (Qdef
u,α ≥ 0)

(λA, λR) if u defaults (Qdef
u,α < 0)

As investors and creditors are paid first, up to the total assets:

L̃u,α = min {Lu,RAu,α}

Out of this aggregated amount L̃u,α, each investor and ex-ante creditor gets proportional pay-
ments: rrLu,α fraction of the original liability. In particular, ni is owed ris but obtains just rrLu,αris.
Institutions are second in seniority, and pay each other proportional to how much each is owed
up to their remaining funds:

rrLu,α = L̃u,α
Lu,α

, rrEu,α = min
{

1, RAu,α − L̃u,α
E→u

}
, rrEC,α =

Ẽ←C,α
E←C,α

After these more senior liabilities are fulfilled (perhaps partially), the bank has RAu,α − RLu,α,
which are use to pay bankersRus

′+(E←u −E→u )s′′, up to those remaining funds with a proportional
share. So the banker i gets paid pi min{1, RAu,α−RLu,α

Rus′+(E←u −E→u )s′′}. What remains is the bank equity.10

This completes the description of contagion. Given the system S and a shock α, for a solution
to the system above, the resulting vector of corresponding components of the system is called a
contagion outcome:

S̃α = (Ãu,α, R̃u,α, L̃u,α, (Ẽ ′uC,α, Ẽ ′Cu,α), (Ẽ ′uv,α)v∈B)u∈B
10In principle, the CCP and the banks can have different seniorities. As it will become clear later, this is not

important as only investors and ex-ante creditors receive positive payments from a bank when the bank defaults.
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3 Characterization

3.1 Contagion Stage: Coordination failures

We now define coordination failures and characterize the importance of cycles for its existence.

Definition. A system with a realized aggregated shock is said to have a coordination failure
if both no bank and all banks default are separate contagion outcomes of the system and pay
0 to each other in case of default. Formally, (S, α) has a coordination failure if there are two
contagion outcomes S̃α1 , S̃α2 such that Q̃def

u,α1 < 0 ≤ Q̃def
u,α2 and Ẽ→u,α,1 = 0 for all banks u.

When there is a coordination failure, we select the outcome with default. Next, we charac-
terize network conditions for the existence of a coordination failure.

Theorem 1. Necessary conditions for the existence of a coordination failure are that the network
i) has a directed cycle and ii) each bank is exposed to a cycle, either directly in the cycle or
indirectly exposed to a bank in the cycle.

Figure 4 portrays an example of the topological conditions for a coordination failure. All
banks are on a subnetwork that is a cycle-rooted tree. Banks along directed cycles default in
a jointly-self-fulfilling fashion (as in the earlier example with three banks). Then cascading
defaults outward from such cycles.

Figure 4: A cycle-rooted tree subgraph. Forest of cycle-rooted trees is a necessary condition for
coordination failures.

Notice that the restriction of 0 payments in case of default is a strong restriction that we
impose for tractability. Still, relaxing that constraint (what we can call a “weak coordination
failure") still requires a cycle for existence.

It is easy to identify conditions for a coordination failure from the default condition (1).

E→u > αAu +Ru − Lu ≥ E→u − E←u (2)

0 > αλAAu + λRRu − Lu (3)
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The first inequality of condition (2) implies that a bank that receives no payments from
other institutions defaults. The second that there is no default if no other bank defaults. The
inequality of condition (3) guarantees that all banks defaulting and paying 0 to each other is
indeed a contagion outcome.

Going forward, and to guarantee that all coordination failures involve 0 payments in case
of default, we assume λR < max{s , 1 − s′/s′′}, which is sufficient when S arises endoge-
nously. Intuitively, the maximal interbank liability E→u is formed for insurance against in-
vestments, and so it is endogenously smaller than a fraction of investment returns. This is,
E→u < Ru max{1− s, s′/s′′}.11 Then, since interbank liabilities are junior liabilities, any default-
ing bank in any contagion outcome makes 0 payment to other banks. Depending on whether
there is a coordination failure or not, interbank recovery and return rates are either all 0 or all
1, and return rates for senior liabilities are (rrLu,α)u∈B =

(
αλAAu+λRRu

Lu

)
u∈B

or (1)u∈B. We can
use this to identify the probability coordination failures tractably.

Proposition 1. There exists a (weak) coordination failure if and only if E→u > αAu+Ru−Lu ≥
E→u − E←u . Denoting the coordination failure cutoffs of a bank by

φu := E→u + Lu −Ru

Au
(4)

φ′u := E→u − E←u + Lu −Ru

Au
.

There exists a coordination failure if and only if

φ := min
u
φu > α ≥ max

v
φ′v =: φ′ (5)

Denoting Φu = Fα(φu)− Fα(φ′), the probability of a coordination failure is Φ = minu Φu.

The coordination failure cutoffs φ and φ′, and multiplicity of contagion outcomes are portrayed
in Figure 5.

α αφ′ φ

coordination
failures

some banks
defaut-proof

some banks
materially insolvent

no-default is a contagion outcome
all-default is a contagion outcome

Figure 5: Probability of coordination failures
11The exposures are formed by the contracts of bankers. During the contracting stage, banks do not allow

the bankers to make insurance promises more than the maximum amount their investments can yield. Then
E→u < (1− s)Ru. Additionally, bankers would not promise a contractual payment d such that their return falls
below zero, so ds′′ < rs′. Then s′′E→u < s′Ru.
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Note that φ′u is invariant to netting and defaults happen trivially because fundamentals
are very severe. Hence, we focus on parametric restrictions on fundamentals, α ≥ φ′ so that
aggregate shocks are not so severe and banks only default because coordination failures.

Condition 1. Bank u does not default if it receives all interbank payments in any contagion
outcome: αAu +Ru − Lu + E←u − E→u ≥ 0. Equivalently, α > φ′u.

This condition requires sufficiently high interconnectedness in the system, through the rele-
vance of E←u − E→u . We relegate the explicit restrictions when discussing the matching process
across bankers in Section 3.2.4. Under this condition, the region below φ′ is eliminated and we
can easily characterize the probability of a coordination failure as follows,

Lemma 1. The probability that there is a contagion outcome in which all banks default is given
by Fα(φ). If Condition 1 holds for all banks, Φ = Fα(φ).

If Condition 1 does not hold, our results would be both about financial stability that involves
both coordination failures and solvency issues. Our results will focus on Fα(φ), which is the
probability that all banks default in the worst contagion outcome.12

A second complication from endogenous exposures is given by the conditional incentives to
default on the margin. When the aggregate shock is below the coordination failure cutoff φ, any
given bank defaulting obtain zero equity, so there are no payments to bankers to be distributed.
If the aggregate shock is well above the cutoff φ, equity is well above the promises to bankers,
and all bankers get paid in full. In contrast, banks close to the defaulting margin may be unable
to repay all their bankers after fulfilling the external liabilities to investors, to the creditor,
and to other institutions. This complicates bankers’ incentives by involving very fine details of
the network to appear in expected payoffs. To avoid these technical complications, we further
impose the next additional restriction

Condition 2. Interbank assets are larger than internal liabilities: E←u ≥ s′Ru + s′′(E←u −E→u ).

Just like Condition 1, we discuss the explicit restrictions on fundamentals that guarantee
Condition 2 when discussing the matching structure later.

Lemma 2. If Condition 2 holds for bank u, all bankers of u get full payment from u whenever
there is no coordination failure and 0 payment when there is coordination failure.

If the aggregate shock is around the coordination failure cutoff banks suffer discontinuous
losses above and beyond the liquidations. The entire notion of a coordination failure is based
on this loss: E←u . If these interbank assets are larger than the internal liabilities to the bankers,

12Worst equilibrium is well-defined due to supermodularity. See Jackson and Pernoud (2020) for more on
multiplicity of equilibria.
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s′Ru+s′′(E←u −E→u ), then bankers payoffs are simplified to no payment or full payment, depending
solely on whether there is a coordination failure or not. As we will discuss, the coordination
failure probability Φ simply scales bankers’ payoffs. Jointly with the continuum assumption,
we can characterize optimal contracts, as single pairs of bankers can not influence aggregate
outcomes.

3.2 Insurance Stage

If both bankers in a pair decide to insure, they sign an optimal contract. We select the Pareto
optimal Nash equilibrium, so if at least one banker is strictly better off by insuring, they insure.
If both bankers are indifferent, they do not insure.13 We proceed in three steps to characterize
the extent and anatomy of insurance. First we discuss the platform, given a contract and a
match, then the optimal contract given a match and finally how the match is formed.

3.2.1 The Platform: OTC or CCP

If the pair i, j has signed a contract, they both observe the signals ιO/Cij/ji and decide whether to
novate the contract, keep it OTC, or annul it. They pick the Pareto dominant option and in case
of indifference, they follow these tie breaking rules: annulment, then OTC, and finally CCP.

Even though investors may be willing to finance an average banker, still face the risk of
financing a bad banker. Once the banker’s quality information is revealed, the investor reassesses
the likelihood of a successful investment, and may choose to withdraw the funds at no cost.
Formally, if ni believes that his banker i ∈ u is a good banker with probability γi, then ni

believes that the investment will succeed with unconditional probability

σiγ ≡ σi0 + γi (σi1 − σi0) ,

in which case ni obtains rs. Otherwise the investment fails, and ni gets rs = 0. The investor
understands, however, that there can be coordination failures, which would reduce the actual
payment to a fraction rrLu,αrs even if the investment succeeds. Recalling the notation ω∗ = V (sr),
the investor’s expected payoff from financing is σiγΩuω

∗ where

Ωu := (1− Φ) + (1/ω∗)ΦEα
[
VI
(
rrLu,αsr

)∣∣∣ α < φ
]
< 1. (6)

Here Ωuω
∗ < ω∗ due to the possibility of coordination failures.

Definition. We say ni has low outside option if ωi < σi0Ωuω
∗, moderate outside option if

σi0Ωuω
∗ < ωi < σiγΩuω

∗, and high outside option if σiγΩuω
∗ < ωi.

13The only case in which both bankers are indifferent is when the optimal contract entails no payments in any
state. So it is without loss that they prefer not to insure in this case. Additionally, this is off-the-path of play.
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We call P ∈ {O,C} pursuable for i if ni has low outside option or ni has moderate outside
option and the signal generated by the platform is uninformative (ιPij = 1). We call P ∈ {O,C}
pursuable for {i, j} if P is pursuable for i and pursuable for j.

Proposition 2. Consider a matched pair of bankers, and a proposed insurance contract, which
is individually rational and yields positive total expected surplus to the pair. The pair keeps the
contract OTC if OTC is pursuable for the pair. Otherwise the contract is annulled. Off-the-path
of play, ni withdraws if and only if ni has moderate outside option and he observes ιij = 0, or
ni has high outside option.

For low and high outside options, information about the banker is irrelevant. In the first
case the investor does not withdraw and in the second he does. For moderate outside option,
information about the banker is relevant because the outside option is low enough to finance an
average banker but high enough not to finance a bad banker. Since ιij = 0 is perfectly revealing
of i being a bad banker, withdrawal is strictly dominant if ιij = 0, and so is annulment by the
bankers to conceal the information. Annulment is uniquely Pareto dominant if ιOij = 0, which
implies that ni never observes ιPij = 0 and ni never update his beliefs on the path of play.

The pairs write an insurance contract in platform P if and only P is pursuable for the pair.
As the contract is individually rational and yields positive total expected surplus, choosing P
Pareto dominates annulment when P is pursuable for the pair. When P is not pursuable for
the pair, annulment Pareto dominates P as at least one banker loses financing and the other is
at best indifferent. CCP is never used because it is always more transparent in the sense that if
OTC reveals a banker is bad, CCP also reveals it (this is, ιOij = 0 implies ιCij = 0). In other words,
if P = C is pursuable for the pair, then so is P = O. Given our tie-breaking rule, no insurance
is ever written though CCP. This is of course a benchmark. When introducing regulation later,
CCP would become preferred in certain circumstances.

Proposition 3. A banker receives funding if and only if his investor has low or moderate outside
option. A pair of matched bankers implement an insurance contract if and only if OTC is
pursuable for the pair. All implemented contracts are implemented on OTC.

Figure 6 shows the regions of investor’s outside options that leads to financing and insurance.
Figure 7 shows, for two bad bankers, the regions of their investors’ outside options that lead to
specific insurance probabilities. When a banker is good, transparency does not impact insurance
probabilities.
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ωi
Ωuω∗

low moderate high
financing +
insurance

financing +
τPij → conceal, 1− τPij → insure

no financing
σiγσi00

Figure 6: Financing, insurance, and concealing regions of investor outside option for a bad
provisional banker early-on-the-line

ωj
Ωvω∗

ωi
Ωuω∗

financing boundary

σiγσi0

σjγ

σj0

1− τPij1

1− τPji
(
1− τPij

) (
1− τPji

)

Figure 7: Ex-ante insurance probability between two bad bankers conditional on obtaining
funding and getting matched, as a function their investors’ outside options

3.2.2 Optimal insurance contract

For a matched pair of bankers, there are insurance gains only in two states of the world; when
one investment succeeds and one fails.14 We denote dij = dij(r, 0) ∈ R and dji = dji(r, 0) ∈ R,
and find the optimal contract (dij, dji) ∈ R2. Since utility is VB(x) = x + θmin{β, x} and
rs′ > 2β, the optimal risk sharing can be achieved giving both bankers β, which is feasible with
only one investments succeeding.

To describe the optimal contract denote

σij = (1− σi)σj, σji = (1− σj)σi

Here σij is the probability that i is “exposed” to j, or j is “liable” to i. This happens when i’s
investment fails and j’s investment succeeds, hence j owes to i. Hence, the expected payoff of
banker i who is matched with banker j and signed a contract (dij, dji) is given by

14Individual rationality can require payments to be made in the state where both investments succeed, not
when both investments fail since bankers have nothing to promise. As our focus is clearing and contagion rather
than details of contracts we relegate the general case to the appendix and assume θ(σji− ξ) > σj −σi for all i, j,
which no payments are necessary under the state in which both investments succeed.
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Φ (σijV (s′′dij) + σjiV (s′r − s′′dij) + ξθs′′(cu(E[α|α > φ] + ζi)− dji))

∝σij(s′′dij + θmin{s′′dij, β})− σjis′′dji︸ ︷︷ ︸
insurance gain

+ θmin{s′r − s′′dij, β})− ξθs′′dij︸ ︷︷ ︸
coll. cost

∝σij min{dij, κ}+ σji min{rs′/s′′ − dji, κ})− djiξ + (σijdij − σjidji)/θ

Proposition 4. The unique optimal contract is given by dij = dji = κ. Total expected contract-
ing gain is (σij + σji − 2ξ)βθ.

Consider the state when i’s investment fails and j’s investment succeeds. By promising dij, j
incurs utility cost dijs′′ with a utility gain to i being s′′dij + θmin{β, s′′dij}. The total insurance
gain is then θmin{β, s′′dij} which is maximized by setting dij ≥ κ ≡ β

s′′
. Similarly, dji ≥ κ,

hence the optimal contract is (κ, κ), also individual rational. Figure 8 shows indifference curves
(for sum of expected payoffs), individual rationality constraints, and the optimal contract.

dij

dji

κ

κ

IRi IRj

Figure 8: Indifference curves for the sum of expected payoffs and IR constraints

Figure 8 shows the individual rationality sets (how much an individuals is willing to pay
conditional on the payment received from the other agent) and the direction of utilities, until
the agent obtains κ, which guarantees consuming β, the utility of the agent increases with more
insurance, but after that level the agent is satisfied (no more utility obtained from insurance)
but still faces a collateral cost. In the figure the optimal insurance contract is feasible, which
is not always the case. Individual rationality can be violated when success probabilities are
significantly uneven. For example, if σij − σji is sufficiently large, the expected transfer to j is
significantly smaller than the expected transfer to i. This is explored in the appendix.

We can now compute the ex-ante probability that an insurance contract is written. The
pursuance rate πi is the ex-ante probability of pursuing a contract, defined as
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πi(·) := σi0 + (1− ·)γi(σi1 − σi0)
σi0 + γi(σi1 − σi0)

While a platform is always pursuable if the banker is good (qi = 1), conditional on being bad
(qi = 0), the ex-ante pursuance rate depends on the probability τPij that the platform generates
a signal about it. Succinctly, πi((1− qi)τPij ) is the ex-ante pursuance rate of P for i. We denote

πPij := πi((1− qi)τPij )× πj((1− qj)τPij )

Proposition 5. The ex-ante probability of an implemented insurance contract between i and j,
if matched, is πOij.

3.2.3 Model of banker matching

Here we describe the matching process. We assume bankers within a bank do not match, so
we focus on undiversified portfolios and the network structure. As we work with matching
between continuums of bankers, we define the masses of actually matched bankers directly,
rather than defining matching probabilities that would generate the corresponding masses of
matched bankers. Our method is akin to stochastic block models and graphons, adapted to
one-to-one matchings. See Erol et al. (2020) for details.

Recall that γi is the probability that banker i is a good banker. Denote γiq = 1 − γi + 2qγi
the probability that i has quality q and γuq = µ−1

u

´
u
γiqdi the probability that a random banker

in u has quality q. Note γu0 + γu1 = 1. These are given outside of the matching structure.

Definition. A matching structure is a vector of non-negative numbers M = ((µqq′uv )v,q,q′ , (µqu0)q)u
that satisfies
• (Measure Preservation) µqq′uv = µq

′q
vu for all u, v, q, q′, and

• (Consistency) µqu0 = γuqµu −
∑
v′
∑
q′′ µ

qq′′

uv′ ≥ 0 for all u, q.
A matching drawn ex-ante from M is a one-to-one measure preserving mapping between

bankers such that for all u, v, q, q′, there is µqq′uv mass of bankers in u with quality q that are
matched with a banker in v with quality q′, and there is µqu0 mass of unmatched bankers of
quality q in bank u.

There is µqq′uv mass of bankers in u with quality q that are matched with a banker in v with
quality q′. If this is counted from the side of bank v, the mass of bankers in v with quality q′

that are matched with a banker in u with quality q is µq′qvu . The first condition µqq
′

uv = µq
′q
vu ensures

that the resulting one-to-one matching between these bankers in u with quality q and in v with
quality v′ is a measure preserving mapping. The mass of bankers in u with quality q that have a
match is then given by ∑v′

∑
q′′ µ

qq′′

uv′ . The remaining bankers in u with quality q are unmatched,
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which has a mass γuqµu −
∑
v′
∑
q′′ µ

qq′′

uv′ . The consistency condition simply means that µqu0 ≥ 0
represents the mass of unmatched bankers in u who have quality q.

Given a matching structure M = ((µqq′uv )v,q,q′ , (µqu0)q)u, the following protocol generates a
matching drawn from M wherein each banker’s match is independent of his identity.

The protocol. The process takes each of γuqµu mass of bankers in u with quality q and
distribute them to “matching categories.” The process assigns each banker among this γuqµu
mass independently to the matching category {(q, u), (q′, v)} with probability µqq′uv (µuγuq)−1, and
to the matching category Null with the residual probability 1 − ∑v

∑
µqq

′
uv (µuγuq)−1

q′ . By the
Consistency property of M , the probability of being assigned to Null is equal to µ−1

u µqu0. Once
all allocations to matching categories are made, consider each category {(q, u), (q′, v)}. The mass
of bankers from u who are allocated to category {(q, u), (q′, v)} is (µuγuq)µqq

′
uv (µuγuq)−1 = µqq

′
uv .

Note that by construction, all of these bankers have quality q. Similarly, the mass of bankers
from v who are allocated to the category {(q, u), (q′, v)} is µq′qvu . These bankers have quality
q′. By the Measure Preservation property of M , µqq′uv = µq

′q
vu , and so there are equal masses of

bankers from u and v in category {(q, u), (q′, v)}. Take each banker in the category from bank
u and allocate an index drawn i.i.d. from uniform U [0, µqq′uv ]. Do the same for bankers in the
category from v. Then, match bankers on two sides that have the same index. Finally, leave
all bankers in category Null unmatched. As being assigned to Null has probability µ−1

u µqu0, the
mass of unmatched bankers of quality q in u is µqu0. Notice that banker indices do not appear
in the process, and the resulting matching is measure-preserving since there are finitely many
categories.

Notice that the identity of banker i influences his match only through his bank’s characteristics
and his realized quality, not the name i in and of itself. Then, for any two bankers i ∈ u and
j ∈ v of quality q and q′, the probability density of i and j getting matched is

µ̃qq
′

uv := µqq
′

uv

µuγuq

µqq
′

uv

µvγvq′

1
µqq

′
uv

= µqq
′

uv

µuγuqµvγvq′

Bankers’ insurance opportunities are determined by the banks’ identities. This captures the
idea that banks serve as hubs of communication across bankers in the economy and reduce search
and matching frictions.

3.2.4 Consolidation and equilibrium

The system results from aggregating the above-mentioned variables. Optimal contracts have
been stated for given success probabilities σi, σj in Proposition 4 but σi, σj depend on banker
qualities. In finding aggregate exposures, we need to take into account the dependence of success
probabilities on the random banker quality and the probability of qualities. Accordingly, index
all relevant variables and functions with banker quality.

20



Denote π0
u =
´
u
πi(d)di the average success rate by bankers in u, and the exposure scaler15

e∗uv =
ˆ
i∈u

ˆ
j∈v

∑
q,q′

γiqγjq′µ̃
qq′

uv π
qq′

Oij(σjq′ − σiq)κdjdi

The exposure scaler e∗uv reflects the critical ingredients of the model except yet the novation
decisions. For a pair of bankers i, j from banks u, v, their qualities are drawn first. Then
they get matched with each other with probability mass µ̃qq′uv . There is π

qq′

Oij probability that they
implement a contract. The contracting probability is influenced by the generation of signals (the
level of transparency). Banker qualities affect the rate at which the contract is pursued because
good bankers are not concerned with investor information and do not conceal information, so
always engage in writing the insurance contract. Finally, the term (σjq′−σiq)κ ≡ (σqq

′

ij −σ
q′q
ji )κ ≡

Dqq′

ij −D
q′q
ji is the expected infinitesimal net liability of v to u due to the contract between i and

j. Once all of these factors are integrated over all banker pairs, the resulting gross liability of v
to u is determined.

Proposition 6. The equilibrium system S∗ is given by16

E ′uv = 〈e∗uv〉 , E ′vu = 〈e∗vu〉 , E ′uC = E ′Cu = 0

Au = µucu, Ru = µuπ
0
uru, Lu = µu(sπ0

uru +m)

The equilibrium coordination failure cutoff is

φ∗ = min
u
c−1
u

(
µ−1
u

∑
v

〈e∗vu〉+m∗
)

where m∗u = m− π0
u(1− s)r

Going forward we assume m∗u > 0 to capture the riskiness of projects and their role in trig-
gering coordination failures. Low m∗ means that the coordination failure cutoff could never be
crossed regardless of the aggregate shock. Then higher size collateral (cu) and higher investment
returns (π0

ur) reduce the probability of coordination failures by providing more assets as buffers.
Higher interbank exposure (e∗uv), higher payments to investors (s), higher payments to creditors
(m) increase the probability by increasing liabilities.

Regarding the effect of transparency on the probability of coordination failure, the only terms
that depend on the level of transparency are exposure scalers e∗uv, through the pursuance rate
πOij, which is decreasing in transparency.

While gross exposures are decreasing in transparency, net liabilities Dqiqj
ij − D

qjqi
ji can be

15To guarantee Conditions 1 and 2 for all following results, we assume αcu < 1
µv

∑
v e
∗
vu +m− (1− s)π0

ur and
s′π0

ur + s′′
∑
v e
∗
vu ≤

∑
v〈e∗uv〉.

16Notice that e∗uv + e∗vu = 0.
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positive or negative, so the net effect of transparency is ambiguous. Still, if both gross are
decreasing, also will be the net as total liabilities decline.17 This is, unless there are large
asymmetries is banker quality probabilities and success probabilities of bankers across different
banks. The effect of netting is also observable as follows. Denote

e→u =
∑
v

〈e∗vu〉 , e←u =
∑
v

〈e∗uv〉

Note that e∗uv+e∗vu = 0, and e→u −e←u = ∑
v e
∗
vu. When there is a coordination failure, the exposure

to u increases from ∑
v e
∗
vu to e→u as the interbank assets e←u are wiped in a coordination failure,

reducing the self-fulfilling contagion cutoff to φ∗. In a mechanical sense, if there is more netting
keeping gross exposures fixed, e→u and e←u would decrease while keeping e→u − e←u fixed. This
would reduce interbank asset cost of coordination failures (e←u ) and self-fulfillingly make the
coordination failures less likely (e→u ).

4 Characterization with Capital Requirements

Here, we want to understand how the system, the equilibrium, and the chances of contagion
endogenously change when capital requirements are imposed on a bank’s aggregate positions,
which is the aggregation of the contracts, so each banker needs to follow internal regulation
imposed by his bank that ensures the bank’s capital adequacy.

4.1 Capital requirements

We follow current regulation and assume that each bank must maintain a capital adequacy ratio,
defined as the ratio of their regulatory capital to risk-weighted assets.18

The regulatory capital REGu (this is, the capital subject to regulation) is given by

REGu =
ˆ
u

(cu(ζi + E[α])−m)di+ (1− s)r
ˆ
uR

σidi

The insurance contracts do not go into regulatory capital as they are off-balance sheet items.
Asset classes are publicly known ex-ante: projects face risk α, investments of each banker

faces risk (σi0, σi1), and contractual interbank exposures face risk (σi0, σi1, σj0, σj1). Accordingly,
risk weights are given by RWA for projects, RWi

R for i’s investment class, RWij
C/O for the class of

insurance contract that insures against returns from investments classes of i and j, for example
17To fix ideas, if one assumes that all bankers are ex-ante identical, then some algebra shows that e∗uv =

(ηuv − ηvu)π01
O . Total exposures to u are ∝

∑
v 〈ηuv − ηvu〉π01

O which is decreasing in transparency τOij ≡ τO.
18See Consolidated Reports of Condition and Income for a Bank with Domestic and Foreign Offices—

FFIEC 031 form for details on how regulatory capital and risk weighted assets are calculated. Available at
https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC031_202112_f.pdf
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an exotic derivative. The regulation differentiates between cleared and OTC exposures, so
RWij

C applies to cleared exposures and RWij
O applies OTC exposures, where RWij

O ≥ RWij
C . It

is important to note that risk weights for (derivative) insurance contracts apply to net asset
contracts, not the net liability contracts.19

Let uO be the set of insured bankers in u that kept contracts OTC, and uC be those that
novated. Let i∗ denote the matched banker j of banker i (so to integrate only over bank u’s
bankers). Then the risk weighted assets RWAu of bank u at the time regulation is given by

RWAu = RWAcu

ˆ
uR

(ζi + E[α])di+ r

ˆ
uR

RWi
Rσidi

+
ˆ
uO

RWii∗

O 〈E [dii∗ − di∗i]〉 di+
ˆ
uC

RWii∗

C 〈E [dii∗ − di∗i]〉 di

The capital requirements imply a certain capital adequacy ratio, CARu. This is, the regula-
tory capital of u must be at least CARu fraction of the risk weighted assets of u:

REGu ≥ CARu × RWAu

The bank must ensure its capital adequacy by internally regulating its (infinitesimal) bankers.
This is typically done by risk divisions of banks by putting restrictions on traders through
automated algorithms. In our framework, bank u imposes every banker to uphold an internal
capital constraint that is the parallel reduction of the capital requirement to individual bankers.
We call this the internal regulation. For a banker i who wants to implement an insurance contract
with a matched banker that we denote i∗, internal capital constraint is

(ζi + E[α]) cu−m+ (1− s)rσi ≥ CARu

(
RWA(ζi + E[α])cu + RWi

Rrσi + RWii∗

O/C 〈E [dii∗ − di∗i]〉
)

Here RWii∗

O/C depends on whether the pair i, i∗ decide to novate their contract or not.
For an arbitrary banker i, define ψiA = 1 − CARbiRWA, ψiR = 1 − s − CARbiRWi

R, and
ρijP = CARbiRW

ij
P for P ∈ {O,C}. The net regulatory capital of banker i can be written as

ki ≡ ψiRσir +
(
ψiA(ζi + E[α])

)
cbi −m,

which we assume always positive.20 The internal capital constraint that i faces is then given by

ki ≥ ρii
∗

P (Dii∗ −Di∗i) (7)
19See Consolidated Reports of Condition and Income for a Bank with Domestic and Foreign Offices—FFIEC

031 form (at https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC031_202112_f.pdf). Pages 78 items 20 and 21
require reporting the positive part of the fair value of cleared and OTC derivatives in risk weighted assets.

20The internal capital constraint for bankers without insurance contracts is ki ≥ 0.
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Importantly, ρii∗O ≥ ρii
∗

C meaning the OTC regulation is tighter than CCP regulation.

Novation and insurance under capital constraints. The contracts must uphold the
capital adequacy constraint for the chosen platform. Given a contract, we say the choice P ∈
{O,C} is adequate if the contract respects inequality (7) for the platform P . Given a contract,
the pair either annuls the contract, or chooses an adequate option. As before, they are assumed
to pick the Pareto dominant option, with the same priority ranking in case of equivalence.

Given this continuation regarding novation, optimal contracts are defined as before: individ-
ually rational expected payoff maximizing contracts. As before, banker play the Pareto optimal
Nash equilibrium.

4.2 Optimal contract with capital constraints

Capital regulation differs across platforms, so there are two contracts to consider: OTC-optimal
and CCP-optimal, which differ by the constraint they face. OTC-optimal contracts display
smaller insurance gains as capital regulation is more binding relative to CCP-optimal contracts.
OTC-optimal contracts, however, display larger pursuance rates as their are more opaque relative
to CCP-optimal contracts. OTC-optimal contracts. Since the platform has to be chosen before
signals are released, bankers will choose the platform that yields a higher expected payoff from
resolving this regulation-opacity trade-off.

Proposition 7. Consider a matched pair i ∈ u, j ∈ v. Denote

ξ∗ij = σijσji
σij + σji

The unique P-optimal contract is determined as follows. If cost of collateral is low, ξ < ξ∗ij, then

DPij = σijdPij = max
{
κσij , κσji − kj

/
ρjiP
}

If cost of collateral is high, ξ > ξ∗ij, then

DPij = σijdPij = min
{
κσij , κσji + ki

/
ρjiP
}
.

We explain Proposition 7 using Figure 9. Without loss, suppose that σij ≥ σji. In the
unconstraint optimal contract (κ, κ), the banker with lower success probability, i, gets paid
more often. He brings his bank positive expected payout, which must be less than his net
regulatory capital ki. If κσij −κσji > ki/ρ

ij, i does not have adequate regulatory capital for the
unconstraint optimal contract. Then i must pay j more in the contract, Dji > κ, to increase
liabilities and reduce net assets of i down to a compliant level, or i must be paid less by j,
Dij < κ, to achieve the same. Which option is optimal depends on the cost of collateral. If i
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Figure 9: Optimal contract when capital constraint binds

pays more, this addition keeps insurance gains at the maximum level by making Dij = κσij and
Dji = κσij − ki/ρij > κσji, but comes at the additional cost of collateral. This is optimal when
the cost of collateral is low. If i gets paid less, insurance gains are lower but saves on collateral
costs by making Dij = κσji + ki/ρ

ij < κσij and Dji = κσji. This is preferred when the cost of
collateral is high. Proposition 7 states these jointly for both cases of σji ≤ σij and σji ≥ σij.21

In what follows we assume low cost of collateral ξ < ξ∗ij for simplicity, as insurance is not
distorted in this case. Total insurance gains are maximal but collateral costs are varied, so the
internal regulation for the banker with lower success probability may bind the pair.

4.3 Novation and ex-ante probabilities of insurance and financing

The insurance gains from OTC-optimal contracts are smaller than those from CCP-optimal
contracts only if capital constraints bind. If they do not, i.e. dO ≡ κ, then DO = DC =
(κσij, κσji), and so total insurance gains are the same, bankers sign d ≡ κ and keep it OTC.
When the OTC constraints bind, i.e. dO 6≡ κ, then OTC is not adequate for the CCP-optimal
contract and dC can be implemented only on CCP, when CCP is pursuable, which happens with
probability πCij. On the other hand, the inferior OTC-optimal contract can be pursued on either
platform with higher probability πOij because of opacity, which value can be defined as

Definition. The value of opacity for i and j is the difference in expected total insurance gain,
net of collateral costs, between an OTC-optimal contract and a CCP-optimal contract.

21Note that the described contracts do not violate the incentive constraints because the rate of substitution
between expected payments to satisfy capital constraints is 1, whereas the same rate for incentive constraint is
distorted by costs of collateral making it larger than 1.
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Lemma 3. Consider a matched pair i ∈ u, j ∈ v. The value of opacity (net of collateral costs)
for the pair is Θij where

Θij =
OTC contracting gains︷ ︸︸ ︷

(πOij) (β(σij + σji)− ξs′′ (dOij + dOji))−
CCP contracting gains︷ ︸︸ ︷

πCij (β(σij + σji)− ξs′′ (dCij + dCji))

= (πOij − πCij) (σij + σji) β︸ ︷︷ ︸
insurance gains

− ξs′′ (πOij (dOij + dOji)− πCij (dCij + dCji))︸ ︷︷ ︸
cost of collateral

Conditional on signing a contract, the pair signs the OTC-optimal contract if the value of opacity
is positive, and the CCP-optimal contract if the value of opacity is negative.

The next Proposition summarizes the optimal platform used for insurance contracts.

Proposition 8. Consider a matched pair i ∈ u, j ∈ v.
A CCP-optimal contract is implemented on CCP if and only if CCP is pursuable and the

value of opacity is negative, which happens with ex-ante probability πCij.
An OTC-optimal contract is implemented on OTC if and only if OTC is pursuable and the

value of opacity is positive, which happens with ex-ante probability πOij.
Otherwise no contract is implemented.

4.4 Collateral and the value of opacity

The sign of the value of opacity net of collateral costs for a pair is the sole determinant of whether
the pair chooses to novate or not. In trying to shift exposures to central clearing, the regulator
then could try to tighten capital constraints of OTC relative to CCP to increases collateral costs
and shift the value of opacity from positive to negative in OTC contracts. Consider the following
ranges of collateral constraints,

Definition. Take a matched pair i, j and let i be the one with lower success probability: σi ≤ σj.
Assume capital constraints are more stringent for OTC contracts, this is ρijO > ρijC . The pair
is said to have high collateral if ρijO(σj − σi)κ < ki, medium collateral if ρijC(σj − σi)κ < ki <

ρijO(σj − σi)κ, and low collateral if ki < ρijC(σj − σi)κ.

Proposition 9. Consider a matched pair i, j and suppose that both platforms are pursuable for
the pair. Without loss take σi ≤ σj. Then DPij = κσij for both P ∈ {O,C}.

If the pair has high collateral, then neither OTC nor CCP constraints bind, DOji = κσji, and
DCji = κσji. The contract is never novated as Θij > 0.

If the pair has medium collateral, OTC constraint binds, CCP constraint does not, DOji =
κσij − ki/ρijO, and DCji = κσji. The contract is novated (this is Θij < 0) if and only if, .

ki < Ñij := ρijO
πOij

(
πCij (σij − σji)− (πOij − πCij) (σij + σji)

(
σji
ξ
− 1

))
κ. (8)
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If the pair has low collateral, then both OTC and CCP constraints bind, DOji = κσij−ki/ρijO,
and DCji = κσij − ki/ρijC . The contract is novated (this is Θij < 0) if and only if,

ki > N
∼ ij

:= max
{

0, πCij
ρijC
− πOij

ρijO

}−1

(πOij − πCij) (σij + σji)
(
σji
ξ
− 1

)
κ. (9)

This proposition is, without loss of generality, written for the case σi ≤ σj, as Proposition
7. In this case j is more likely to succeed and pay to i. Since i has a net exposure to j she
has to hold capital, but j does not. Hence DPij = κσij regardless of regulation or platform,
but DPji = max{κσji, κσij − ki(ρijP )−1} since i has to potentially distort the contract given the
collateral cost it implies.

In the case of high collateral the OTC constraint does not bind, hence the CCP constraint
does not bind either. Then d ≡ κ, the pair uses OTC regardless, and regulation is ineffective in
shifting exposures. Bankers keep the contract OTC, as it is more pursuable given its opacity.

In the case of medium collateral, the pair entertains switching from a constrained OTC-
optimal contract with opacity to an unconstrained CCP-optimal contract with transparency.
The benefit from novating the contract comes from savings in collateral, which are more relevant
for i if not having that much collateral, ki, as given by condition (8). Hence, conditional on a
region of medium collateral, as regulation gets tighter, bankers with higher collateral among the
medium collateral bankers are the last to switch to CCP.

In the case of low collateral, both CCP and OTC capital contraints bind. In this case bankers
compare the opaque OTC-optimal optimal contract with the transparent CCP-optimal contract.
The gains from relaxing regulation by shifting to CCP is given by the relative degree of pursuance
of the platform relative to its regulatory cost πPij

ρijP
as in equation (9). If this ratio is lower for

CCP than for OTC, and the lower regulation does not compensate the loss from transparency,
the pair never novates. If regulation become more stringent for OTC (say an increase of ρijO or
reduction of ρijC) those bankers with high collateral will novate first. Hence, conditional on a
region of low collateral, as regulation gets tighter, bankers with lower collateral among the low
collateral bankers are the last to switch to CCP.

4.5 Equilibrium system

Denote {{·}} the Iverson bracket. This is, {{x}} = 1 if x holds and {{x}} = 0 otherwise.
Out of the contract between i and j, the resulting (infinitesimal) gross exposure of u to v is
DOij{{Θij > 0}}. The resulting gross exposure of u to CCP is DCij{{Θij < 0}}. Indexing all
relevant variables and functions by the quality of bankers we obtain the following proposition.
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Proposition 10. The equilibrium system is given by

E ′∗vu = 〈e∗∗vu〉 , E ′∗uv = 〈e∗∗uv〉 , E ′∗Cu = 〈
∑
v

e∗∗vCu〉, E ′∗uC = 〈
∑
v

e∗∗uCv〉

Au = µucu, Ru = µuπ
0
uru, Lu = µu(sπ0

uru +m)

where

e∗∗uv :=
∑
q,q′

ˆ
i∈u

ˆ
j∈v

πqq
′

ijO(Dqq′

Oij −D
q′q
Oji){{Θ

qiqj
ij > 0}}γiqγjq′µ̃qq

′

uv djdi

e∗∗uCv :=
∑
q,q′

ˆ
i∈u

ˆ
j∈v

πqq
′

ijC(Dqq′

Cij −D
q′q
Cji){{Θ

qiqj
ij < 0}}γiqγjq′µ̃qq

′

uv djdi

for all u, v. Define exposure-to-u scaler as

e⇒u =
∑
v

〈e∗∗vu〉+ 〈
∑
v

e∗∗vCu〉

The equilibrium probability of a coordination failure is Φ∗ = Fα(φ∗) where

φ∗ = min
u
c−1
u

(
µ−1
u e⇒u +m∗u

)
Notice that exposures e∗∗uv and e∗∗uCv, and ultimately the coordination failure Φ∗ cna be written

in closed form by substituting D from Proposition 7 and {{Θqiqj
ij > 0}} from Proposition 9.

5 Characterization when banks just differ on collateral

Assume that all bankers are identical, this means σi0, σi1, γi, τOij , τCij , RW i
R, RW

i
A, RW

ij
O/C are

identical across all bankers and pairs. Also assume that banks have the same capital adequacy
ratio CARu. There is only heterogeneity on bank’s sizes and value of the projects, this is both
(cu and µu). Though differences in size, this also has implications for matching.

When bankers in a match are of the same quality (this is qi = qj), σij = σji. In these
cases capital constraints do not bind and the pair signs (κ, κ) always, without contributing to
bilaterally netted exposures between banks. If one banker in the match is good, however, and
the other is bad, the pair adds to bilateral exposure between banks. Accordingly, the relevant
variables for the coordination failure are those that relate to pairs of bankers of opposite quality.
Next, we drop banker indices, refine notation, and introduce some simplifying definitions for
brevity and easier interpretation.
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For a match with a good and a bad banker, denote22

∆ := (σ1 + σ0 − 2σ0σ1) (σ0(1− σ1)/ξ − 1)κ, δ := (σ1 − σ0)κ

ku := ψRσ0 + (ψA(E[α] + Z)−m)cu, ku := ψRσ0 + (ψA(E[α]− Z)−m)cu

5.1 The novation gap and the opacity gap.

Using this simplified notation, we can define the opacity and novation gaps, and the range of
parameters for which there is novation, as follows

Definition. We call ΓOP the opacity gap, ΓCR the (capital) regulation gap, given by

ΓOP = 1− π(τC)
π(τO) , ΓCR = 1− ρC

ρO

We call N the upper novation cutoff and N lower novation cutoff, given by23

N = ρO (δ − ΓOP(∆ + δ)) , N = ρC max {0,ΓCR − ΓOP}−1 ΓOP∆

We call N the novation gap and Nu the novation gap towards u, given by

N =
(
N,N

)
, Nu = N ∩ [ku, ku]

For a pair i, j that implements an insurance contract, we say i sells insurance to j and j buys
insurance from i if i is a good banker and j is a bad banker.

We denote ηuv the mass of bankers in u (bad bankers in u) that buy insurance from a banker
in v (good bankers in v), and viceversa. This is an important object because only bankers
buying insurance are those that may be restricted regulatory constraints. We also denote πP
the pursuance rate for buying and selling insurance on P ∈ {O,C}:

ηuv := µ01
uv, ηvu := µ01

vu, πO := π01
O = π(τO), πC := π01

C = π(τC)

Lemma 4. The extensive margins are described by the novation gaps. If banker i buys insurance
from j, they novate their contract if and only if ki ∈ N .24 This novation gap is empty (this is,
N < N) if and only if ΓOP

ΓCR
> δ

∆+δ .

22Recalling net regulatory capital of i, ki = ψiRσi+
(
ψiA(ζi + E[α])−m

)
cbi , ku and ku the largest and smallest

net regulatory capital for a bad banker in u. The purpose of the idiosyncratic component ζi is to generate
heterogenous preferences within a bank and so we can study intensive margins.

23Notice Ñij = N and N
∼ ij

= N when qi = 0, qj = 1.
24If N > N , then

(
N,N

)
= ∅.
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Notice that in the definition of novation gap, N only depends on the opacity gap, ΓOP. This
is because the novation decision between a pair who is constrained on the OTC but not on the
CCP is independent of the CCP-regulation level. In contract, N does depend on the regulation
gap, ΓCR, As ρC increases up from 0 to ρO, N increases from 0 to ∞, and at some point there
is no novation.

Regulatory constraints also affect novation on the intensive margin. To see this, in what
follows we characterize the average net positions

Definition. The average OTC net position towards u is

Ou =(ku − ku)−1
(
δ
〈
ku − JρOδKu

〉
+ (2ρO)−1

〈
JρOδK

2
u −

q
max{N, ρCδ}

y2
u

〉
+ (2ρO)−1

〈
Jmin {N, ρCδ}K2

u − k
2
u

〉)

The average CCP net position towards u is

Cu =(ku − ku)−1
(
δ〈JNKu − JρCδKu〉+ (2ρC)−1〈JρCδK2

u − JNK2
u〉
)

where
J·Ku := min{ku,max{ku, ·}}

Here Ou is the average net position of OTC insurance to buyers in u, averaged by the mass
of all insurance buying bankers in u. The counterpart for novated contracts is Cu. As a corollary
of the expression of Cu we see that a contract between a good banker and a bad banker i ∈ u
whose net collateral is in a middle range from Jmin{N, ρCδ}Ku to Jmax{N, ρCδ}Ku are novated.
This pins down the novation gap. As N < ρCδ and N > ρCδ are equivalent, the novation gap is
(JNKu, JNKu). The remaining contracts are kept OTC.

Lemma 5. The intensive margins are described by the average OTC and CCP net positions.
Equilibrium exposure scalers are given in closed form as

e∗∗uv = πO (ηuvOu − ηvuOv)

e∗∗uCv = πC (ηuvCu − ηvuCv)

Exposure-to-u scaler is

e⇒u = πO
∑
v

bilaterally netted︷ ︸︸ ︷
〈ηvuOv − ηuvOu〉+ πC

"multilaterally" netted via CCP︷ ︸︸ ︷
〈
∑
v

(ηvuCv − ηuvCu)〉

Figure 10 describes the extensive margins through the novation gap, and intensive margins
by the corresponding binding constraint. While N increases in ΓOP, N decreases in ΓOP. In fact,
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Figure 10: Novation gap as ρC increases

the novation thresholds are the sole channel through which opacity impacts extensive margins.
A direct implication is that a way to induce more novation is by making CCPs less transparent.

Corollary 1. The CCP adoption (i.e. the novation gap N ), is decreasing in the transparency of
the CCP (via increasing the opacity gap ΓOP), down to no adoption (i.e. N = ∅) when opacity
gap becomes too high relative to regulation gap (i.e. ΓOP ≥ ΓCR

δ
∆+δ ).

In words, CCPs introduce transparency in addition of multilateral netting. An opaque clear-
inghouse who provides netting without transparency would achieve higher rate of adoption. The
opacity gap would be 0, and all bankers would adopt the clearinghouse. In a sense, regulation
aimed to promote clearing and increase transparency via reduced risk weights for CCP novation
makes itself redundant.

Based on these insights, and to put recent implemented regulation in perspective, consider
a hypothetical regulator who can choose risk weights as well as the transparency of the CCP,
τC . Assume his primary objective is full financial stability by eliminating coordination failures,
while a secondary objective is to maximize transparency for some political or other non-modeled
reasons. The next result shows the minimum opacity gap that is consistent with full CCP
adoption that eliminates coordination failures.

Corollary 2. All exposures of bank u are completely cleared regardless of the matching structure
if and only if

ΓOP ≥ max

∆ + ku
ρO

∆ + δ
,
∆ + ku

1
ρO

∆ + ku
1
ρC


In what follows we maintain the opacity gap as given and study the challenges that a regulator

faces trying to incentivize clearing just using regulatory requirements. But before discussing the
adverse consequences of this type of regulation, we characterize next the conditions under which
it is ineffective in inducing clearing, both at intensive and extensive margins.
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5.2 The effects of regulation

We first study intensive margins in a systemic way. We focus on a simple and minimal matching
structure that does not preclude coordination failures by default.

Definition. Call a matching structure out-regular if there is some η and g such that the following
hold. For all u, v, ηuv ∈ {0, η} and for all v |{u : (ηuv, ηvu) = (η, 0)}| = g.

In words, when ηuv = ηvu, u and v do not have exposures to each other. When (ηuv, ηvu) =
(0, η), v is exposed to u. Under an out-regular matching structure, bank v can be exposed to any
number of banks, but the number of banks exposed to v is g, same for all v. This is, each bank
sells insurance to the same number of banks, and while the number of banks that a given bank
buys insurance from is not directly limited by out-regularity, the number of insurance sellers and
buyers must always add up to the same amount.

Proposition 11. Suppose that all banks have the same collateral structure (i.e. same mass
µu = µ and caliber cu = c for all banks). Assume that the matching structure is out-regular with
η and g. Then, the coordination failure threshold is φ∗ = (O 1

µ
πOgη +m∗)/c.

The simplicity in this case comes form the following observation. Since the total exposures
to and from the CCPs are equal, there is at least one bank that does not expose the CCP. This
bank’s total outgoing OTC exposures, which is fixed by regularity, determines the probability
of coordination failures. Hence, the average conditional exposure O is a sufficient statistic for
the efficacy of regulation in reducing coordination failures.

We measure the effects on the average net position of OTC contracts by insurance-buying
bankers in u averaged by the mass of OTC insurance buying bankers in u

Õ = O
OTC prob. = k − k

(k − k)− (JNK− JNK)
O

The marginal efficacy of increasing ρO and decreasing ρC is the elasticity of Õ, defined as

EffO = − dÕ
dρO

ρO

Õ
EffC = dÕ

dρC
ρC

Õ

These elasticities depend on the amount of collateral banks hold. IN what follows we distin-
guish three ranges: high, medium and low.

Corollary 3. (High collateral) In addition to Proposition 11 assume high collateral: k > ρOδ.
There is no novation, contracts are unconstrained, and O = δ. Regulation is ineffective:

EffO = 0 EffC = 0
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Fixing the extensive margins regulation does not bind banks that have high collateral and the
novation gap is empty. All contracts are kept OTC and the probability of coordination failures
do not depend on regulation on the intensive margin. This result is particularly relevant for
the post-Dodd-Frank Era. Further, when there is heterogeneity, high collateral banks are more
likely to be the determinants of the probability of coordination failures, since Φ∗ is decreasing
in c. It is possible that these determinant banks with high enough collateral do not react to
regulation.

Corollary 4. (Medium collateral) In addition to Proposition 11, assume medium collateral,
ρOδ > k > k > ρCδ. Then O = (4ρOZψA)−1

〈
k2 − JNK2

〉
.25 For k < N < k, all OTC contracts

are constrained, but larger contracts are kept OTC whereas smaller contracts are novated. The
efficacy of regulation in diminished by medium collateral:

EffO = k

k +N
∈ (1

2 , 1) EffC = 0

The inefficacy stems from the fact that high collateral pairs have high value of opacity and
are last to switch to CCPs as regulation gets tighter. Formally, when the net regulatory capital
is between and JNK and k, the value of opacity is positive and the pair keeps the contract OTC,
in spite of being constrained by regulation, as reflected in the ρ−1

O term in O. This renders
regulation somewhat effective, but not fully given that the average exposure stemming from
these contracts is proportional to k2−JNK2

k−JNK
= k + JNK which increases in ρO.

Corollary 5. (Low collateral) In addition to Proposition 11, assume low collateral, ρCδ > k.
Then O = (4ρOZψA)−1

〈
JNK2 − k2

〉
.26 For k < N < k, all OTC contracts are constrained, and

larger contracts are novated whereas smaller contracts are kept OTC. The efficacy of regulation
in magnified by low collateral.

EffO = N

N + k

1− ΓCR

ΓCR − ΓOP
+ 1 > 3

2 EffC = N

N + k

1− ΓOP

ΓCR − ΓOP
>

1
2

As in the case of medium collateral, contracts are constrained by OTC regulation reflected
in the ρ−1

O term in O. This makes regulation effective. Additionally, contracts with larger net
positions move to novation first and the average exposure stemming from contracts that are kept
OTC is N2−k2

N−k = N + k which decreases in ρO. This adds efficacy to regulation.
In summary, the effects of regulation depends critically on the amount of collateral. Reg-

ulation has a larger impact when buyers of insurance are relative scarce on collateral. When
there is heterogeneity, regulation can potentially be less effective in segments of the network that

25For N > k, all contracts are novated. There is no coordination failure and efficacy is not well-defined. For
N < k, there is no novation and OTC capital constraints bind all contracts. EffO = 1, EffC = 0.

26For N < k, all contracts are novated. There is no coordination failure and efficacy is not well-defined. For
N > k, there is no novation and OTC capital constraints bind all contracts. EffO = 1, EffC = 0.
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is highly collateralized. If there is a positive correlation between high collateral and intercon-
nectedness, it is possible that parts of the network with cycles, which are the more important
targets for regulation, are the least likely to react to regulation. In fact, our data also shows
that post-regulation, OTC exposures in the core of the network is backed by high collateral and
the core is highly interconnected with cyclic exposures.

6 Conclusion

Recent regulations that tax the use of OTC insurance contracts and subsidize those that use
CCPs have had mixed success and much discussion. In order to make progress on this discussion,
it is critical to understand how financial intermediaries connect with each other and how large
are those connections. We have proposed a model to understand the effects of regulation and
capture asymmetric reactions across heterogeneous banks. While OTC markets maintain opacity
about insurance needs and then allow for insurance without affecting funding costs, they are
more exposed to coordination failures that may drive the whole banking system to collapse.
While banks internalize the benefits of OTC contracts, they do not internalize the coordination
costs. This justifies the regulation that tries to incentivize the use of CCPs. However, when the
gains of opacity are larger than the regulatory costs, which is usually the case when a bank has
frequent needs for insurance, regulations are not very effective. These are, however, the banks
that are more likely to trigger coordination failures.

Modeling coordination failures and what they depend on requires a setting with endogenous
formation of exposures. A contribution of this paper is proposing a tractable model in which this
endogenous formation, both at extensive and intensive margins, can be captured parsimoniously.
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A Proofs

Proof. (Theorem 1) In all contagion outcomes Ẽ←u,α ≤ E←u,α. Then if E←u,α = 0, Ẽ←u,α = 0.
Then in condition (1) holds or does not hold irrespective of the contagion outcome. This is, u
either always defaults or never defaults in any contagion outcome. So there can not be a weak
coordination failure.

This means E←u,α > 0 for all u if there is a weak coordination failure. Then start with bank
u0 and construct a sequence as E ′utut+1 > 0. As there a finitely many banks, there is some y < y′
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such that uy = uy′ . Then there is a directed cycle of exposures from uy to uy′−1. If y = 0, then
u0 is on a cycle. Otherwise u0 is indirectly exposued to the cycle through the path u0 to uy.

Proof. (Proposition 1) First requirement for a coordination failure is that all banks defaulting
and paying each other 0 is a contagion outcome. This is true if and only if for all banks, the
bank defaults if it receives 0 payments from other institutions, and the bank can pay 0 to other
institutions whenever it receives zero from other institutions and defaults. The conditions are
then given by

0 > αAu +Ru − Lu − E→u
0 ≥ λAαAu + λRRu − Lu

These are generically equivalent to the left hand sides of inequalities (2).
A banker in i ∈ u when can not promise more than rs′ when signing a contract with another

banker. Accordingly, E→u ≤ Rus
′. Under λR < s, E→u ≤ Rus

′ ≤ Ru(1 − λR). Then 0 >

αAu +Ru − E→u − Lu implies 0 > λAαAu + λRRu − Lu.
The second requirement is that no banks default is also a contagion outcome. This is given

by Qu,α ≥ 0 which is equivalent to the left hand side of inequality (2).
The remaining parts are straightforward.

Proof. (Proposition 5) Proposition 2 and the independence of wi and wj yields the result.

Proof. (Proposition 6) On the path of play there are no withdrawals. All bankers who have
been financed remain financed. The collateral is liquidated for bankers who fail to secure fi-
nancing and the credit is returned to the creditor. For i ∈ u, the probability of financing is
κi(0) = πi(0)Ωuω

−1. Then Ai =
´
aidi =

´
κi(0)cudi = cuΩuω

∗ω−1 ´ πi(0)di = Ωua
∗
u. Pos-

itive project returns are contingent on financing (κi(0)) and project success (πi(0)): Ru =´
u
κi(0)πi(0)rdi = rΩuω

∗ω−1 ´ (πi(0))2di = Ωur
∗
u. Similarly, Lu = sr∗u +m∗.

We know that the probability mass of i ∈ u and j ∈ v having qualities q and q′, and getting
matched is γiqγjq′µ̃qq

′
uv . The probability of insurance is κτiji κ

τji
j . The net expected payment flow
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from j to i is Dqq′

ij . Then

Euv − Evu =
∑
q,q′

ˆ
i∈u

ˆ
j∈v

κ
τij
i κ

τji
j D

qq′

ij γiqγjq′µ̃
qq′

uv djdi

−
∑
q′,q

ˆ
j∈v

ˆ
i∈u

κ
τij
i κ

τji
j D

q′q
ji γiqγjq′µ̃

qq′

uv didj

=
∑
q,q′

ˆ
i∈u

ˆ
j∈v

κ
τij
i κ

τji
j

(
Dqq′

ij −D
q′q
ji

)
γiqγjq′µ̃

qq′

uv djdi

= ΩuΩvω
−2ω∗2

∑
q,q′

ˆ
i∈u

ˆ
j∈v

πqq
′

ij

(
Dqq′

ij −D
q′q
ji

)
γiqγjq′µ̃

qq′

uv djdi

= ΩuΩve
∗
uv

Proof. (Proposition 7) Fix a platform and drop the platform index. Wlog take βji ≤ βij. First
ignore IC. The capital-unconstrained optimal is (Dij, Dji) = (βij, βji) by θ(σji − ξ) > σj − σi.
As kj/ρji ≥ 0 ≥ βji − βij, j’s capital constraint does not bind. If ki/ρij ≥ βij − βji, then the
solution is (βij, βji) regardless of ξ.

Consider the case of βji ≤ βij and ki/ρij < βij − βji. Total expected contracting gain is
θ(σij min{β, dij}+σji min{β, dji}−ξdij−ξdji). This is decreasing in (dij, dji) on (dij, dji) ≥ (β, β)
and increasing on (dij, dji) ≤ (β, β). As ki/ρij < βij − βji, the region dij ≥ β,dji ≤ β violates
i’s capital constraint. So the solution is on dij ≤ β, dji ≥ β. In this region, Total expected
contracting gain is θ(σijdij +σjiβ− ξdij− ξdji), which is increasing in dij ∈ [0, β] and decreasing
in dji ∈ [0, β]. The capital constraint of i is σijdij ≤ ki/ρij + σjidji. So the solution is on the
border of the constraint. The slope of the indifference curve σij−ξ

ξ
is larger than the slope of the

border of the constraint σij
σji

if and only if

σij
σji

<
σij − ξ
ξ

⇐⇒ ξ(σij + σji) < σijσji ⇐⇒ ξ < ξ∗ij

Now consider the case of ξ < ξ∗ij. In this case, the solution is given maximizing dij, so dij = β

and (σijβ − ki/ρij)/σji = dji. By the satisfied capital constraint of j at (β, β) and the violated
capital constraint of i at (β, β) we have

max
{
β,
βji − kj/ρji

σij

}
= β = dij,

βij − ki/ρij
σji

= max
{
β,
βij − ki/ρij

σji

}
= dji

For the case of ξ > ξ∗, the solution is given by minimizing dji, so dji = β and dij = σjiβ+ki/ρij
σij

.
By the violated capital constraint of i at (β, β) and the satisfied capital constraint of j at (β, β)
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this can be written as

β > min
{
β,
βji + ki/ρij

σij

}
= βji + ki/ρij

σij
= dij, min

{
β,
βij + kj/ρji

σji

}
= β = dji

Last step is to check the IC. As dij ≤ β and dji ≥ β, the IC constraints are

0 ≤? σij(dij + θdij)− (σji + ξθ)dji = ki/ρij + θ(ki/ρij + (σji − ξ)dji) > 0

0 ≤? σji(dji + θβ)− (σij + ξθ)dij ≥ σji(β + θβ)− (σij + ξθ)β = β(θ(σji − ξ)− (σj − σi)) > 0

So both are satisfied.

Proof. (Proposition 9) By Proposition 7 and the definition of Θ in Lemma 3. The rest is
straightforward algebra that proves ki < Ñij ⇐⇒ Θ < 0 under medium collateral, and
ki > N

∼ ij
⇐⇒ Θ < 0 under low collateral.

Lemma 6. (Auxiliary) Suppose all bankers are ex-ante identical within a bank. This means:
σi0 ≡ σu0, σi1 ≡ σu0, γi ≡ γu, τ

O
ij ≡ τOuv, τ

C
ij ≡ τCuv,RWi

R ≡ RWu
R, and RWij

O/C = RWuv
O/C for all

i ∈ u, j ∈ v.
Denote Iqq′uv = I[σvq′ − σuq > 0] and define

Oqq
′

uv = 1
2Zψu

A
cu

(
δqq
′

uv

(
ku−

r
ρuvO δqq

′
uv

z

u

)
+(2ρuvO )−1

((r
ρuvO δqq

′
uv

z2
−Λu(max{Nuv ,ρuvC δqq

′
uv })2

)+
+
(

Λu(min
{
Nuv ,ρ

uv
C δqq

′
uv

}
)2−k2

u

)+
))

Cqq′uv = 1
2ZψuAcu

δqq′uv (Λu(min
{
Nuv, ρ

uv
O δ

qq′

uv

}
)− Λu(ρuvC δqq

′

uv )
)+
Cqq′uv +(2ρuvC )−1

(
Λu(ρuvC δqq

′

uv )2 − Λu(Nuv)2
)+


Then exposure scalers are given by

e∗∗uv = ω−2∑
qq′
µqq

′

uv π
qq′

uvO

(
Iqq′uvOqq

′

uv − Iq′qvuOq
′q
vu

)

e∗∗uCv = ω−2∑
qq′
µqq

′

uv π
qq′

uvO

(
Iqq′uv Cqq

′

uv − Iq′qvu Cq
′q
vu

)
Proof. (Lemma 6) Suppose βji ≤ βij (note 0 ≤ δij := βij − βji = β (σj − σi)). The expected
payments in the contract and novation choice between i and j conditional on pursuability is
summarized as:
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(DPij , DPji, DPij −DPji) βij − ki

ρij
C

< βij − ki

ρij
O

< βji βij − ki

ρij
C

< βji < βij − ki

ρij
O

βji < βij − ki

ρij
C

< βij − ki

ρij
O

(βij , βji, δij)O NA NA
ki < Ñij (Θij < 0) NA (βij , βji, δij)C NA
ki > Ñij (Θij > 0) NA

(
βij , βji − ki

ρij
O

, ki

ρij
O

)
O

NA

ki > N
∼ ij

(Θij < 0) NA NA
(
βij , βji − ki

ρij
C

, ki

ρij
C

)
C

ki < N
∼ ij

(Θij > 0) NA NA
(
βij , βji − ki

ρij
O

, ki

ρij
O

)
O

Recall definitions of e∗∗uv, e∗∗uC , e∗∗Cu. Note x = x+ + x− = x+ − (−x)+. Then

e∗∗uv =ω−2 ∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijO (Dqiqj

Oij −D
qjqi
Oji ){{Θ

qiqj
ij > 0}}γiqiγjqj µ̃qiqjuv djdi

=ω−2 ∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijO (Dqiqj

Oij −D
qjqi
Oji )+{{Θqiqj

ij > 0}}γiqiγjqj µ̃qiqjuv djdi

− ω−2 ∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijO (Dqjqi

Oji −D
qiqj
Oij )+{{Θqiqj

ij > 0}}γiqiγjqj µ̃qiqjuv djdi

and

e∗∗Cv =ω−2∑
u

∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijC (Dqiqj

Cij −D
qjqi
Cji ){{Θ

qiqj
ij < 0}}γiqiγjqj µ̃qiqjuv djdi

=ω−2∑
u

∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijC (Dqiqj

Cij −D
qjqi
Cji )+{{Θqiqj

ij < 0}}γiqiγjqj µ̃qqiqjuv djdi

− ω−2∑
u

∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijC (Dqjqi

Cji −D
qiqj
Cij )+{{Θqiqj

ij < 0}}γiqiγjqj µ̃qqiqjuv djdi

Recall µ̃qq′uv = µqq
′

uv

µuγuqµvγvq′
. As bankers in a bank are ex-ante identical

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijP

(
D
qiqj
Pij −D

qjqi
Pji

)+
{{±Θqiqj

ij < 0}}γiqγjq′µ̃qiqjuv djdi

=µ
qiqj
uv π

qiqj
uvP

µuµv

ˆ
i∈u

ˆ
j∈v

(
D
qiqj
Pij −D

qjqi
Pji

)+
{{±Θqiqj

ij < 0}}djdi

=µ
qiqj
uv π

qiqj
uvP

µuµv

ˆ
i∈u

ˆ
j∈v

(
D
qiqj
Pij −D

qjqi
Pji

)
I[σi < σj]{{±Θqiqj

ij < 0}}djdi

Then I[σi < σj] determines the direction of the contribution to the exposure between u and
v. {{±Θqiqj

ij < 0}} determines the platform for i and j. Denote Iij = I[σj − σi > 0] .
Regarding Iij, for i ∈ u, j ∈ v, δij has four cases depending one the quality of the bankers:

σv0 − σu1 < (σv1 − σu1&σv0 − σu0) < σv1 − σu0. In terms of which one of these are positive or
negative, there are 6 cases to consider. Regarding

(
D
qiqj
Pij −D

qjqi
Pji

)+
, the relevant cases are when

Iij = Iqiqjuv > 0.
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In all of these cases, for some q, q′, conditional on qi = q, qj = q′ (i.e. conditional on a specific
δij = δqq

′
uv ) such that Iqq′uv = 1, notice that (DPij −DPji) Iij{{±Θqq′

ij < 0}} does not depend on
the identity of j. DPij − DPji ∈ {δqq

′
uv ,

ki
ρuvO
, ki
ρuvC
}. {{±Θqq′

ij < 0}} captures the platform choice
through Θij = Θqq′

iv , which depends on ki but not kj. So conditional on qualities qi = q, qj = q′,
ˆ
i∈u

ˆ
j∈v

(
Dqq′

Pij −D
qq′

Pji

)
I[σi < σj]{{±Θqq′

ij < 0}}djdi

=
ˆ
i∈u

ˆ
j∈v
{δqq′uv ,

ki
ρuvO

,
ki
ρuvC
}Iqq′uv {{±Θqq′

iv < 0}}djdi

=µv
ˆ
i∈u
{δqq′uv ,

ki
ρuvO

,
ki
ρuvC
}Iqq′uv {{±Θqq′

iv < 0}}di

Recalling ki = ψiRσi + (ψiA(ζi + E[α])−m) cbi , we have ki = ψuRσuq + (ψuA(ζi + E[α])−m) cu,
we have

ˆ
i∈u

ˆ
j∈v

(
Dqq′

Pij −D
qq′

Pji

)
I[σi ≤ σj]{{±Θqq′

iv < 0}}djdi

= µuµv
2ZψuAcu

ˆ ku

ku

{δqq′uv ,
ki
ρuvO

,
ki
ρuvC
}Iqq′uv {{±Θqq′

iv < 0}}dki

Denote Λi(·) = min{ki,max{ki, ·}}. Since bankers are ex-ante identical within a bank, we
use Λu = min{ku,max{ku, ·}}. Then conditional on (qi = q, qj = q′),

´ ´ (
D
qiqj
Pij −D

qjqi
Pji

)+
ζijdj

is 0 if Iqq′uv = 0, and given by the following if Iqq′uv = 1:
( µuµv

2Zψu
A
cu

)−1 ´ ´ (Dqiqj

Pij −D
qjqi

Pji

)+
ζijdjdi ρuvO δqq

′

uv < ki ρuvC δqq
′

uv < ki < ρuvO δqq
′

uv ki < ρuvC δqq
′

uv

O :
´ ku

Λu(ρuv
O
δqq′

uv ) δ
qq′

uv dki NA NA

ki > Nuv (Θiv > 0) NA O :
´ Λu(ρuv

O δqq′
uv )

Λu(max{Nuv,ρuv
C
δqq′

uv })
ki

ρij
O

dki NA

ki < Nuv (Θiv < 0) NA C :
´ Λu(min

{
Nuv,ρ

uv
O δqq′

uv

}
)

Λu(ρuv
C
δqq′

uv )
δijdki NA

ki > Nuv (Θiv < 0) NA NA C :
´ Λu(ρuv

C δqq′
uv })

Λu(N
uv

)
ki

ρij
C

dki

ki < Nuv (Θiv > 0) NA NA O :
´ Λu min

{
N

uv
,ρuv

C δqq′
uv

}
k

u

ki

ρij
O

dki
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Then

∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijO (Dqiqj

Oij −D
qjqi
Oji )+ζ{Θqiqj

ij }γiqiγjqj µ̃qiqjuv djdi

=
∑
qq′

Iqq′uv
µqq

′
uv π

qq′

uvO

µuµv

µuµv
2ZψuAcu

(((
ˆ ku

Λu(ρuvO δqq
′

uv )
δqq
′

uv dki +
ˆ Λu(ρuvO δqq

′
uv )

Λu(max{Nuv ,ρuvC δqq
′

uv })

ki
ρuvO

dki +
ˆ Λu min

{
Nuv ,ρ

uv
C δqq

′
uv

}
ku

ki
ρuvO

dki)))

=
∑
qq′

Iqq′uv µqq
′

uv π
qq′

uvO

1
2ZψuAcu

(((δqq′uv
(
ku − Λu(ρuvO δqq

′

uv )
)

+ (2ρuvO )−1
((

Λu(ρuvO δqq
′

uv )2 − Λu(max{Nuv, ρ
uv
C δ

qq′

uv })2
)+

+
(
Λu(min

{
Nuv, ρ

uv
C δ

qq′

uv

}
)2 − k2

u

)+
)

)))

=:
∑
qq′

Iqq′uv µqq
′

uv π
qq′

uvOOqq
′

uv

where

Oqq
′

uv = 1
2Zψu

A
cu

(
δqq
′

uv

(
ku−Λu(ρuvO δqq

′
uv )
)

+(2ρuvO )−1

((
Λu(ρuvO δqq

′
uv )2−Λu(max{Nuv ,ρuvC δqq

′
uv })2

)+
+
(

Λu(min
{
Nuv ,ρ

uv
C δqq

′
uv

}
)2−k2

u

)+
))

These are exposures of u to v from contracts in which v owes u in expectation. Subtract from
this the the contracts in which u owes v in expectation to find e∗∗uv. Then

e∗∗uv = ω−2∑
qq′
µqq

′

uv π
qq′

uvO

(
Iqq′uvOqq

′

uv − Iq′qvuOq
′q
vu

)

As for the CCP exposures,

∑
qiqj

ˆ
i∈u

ˆ
j∈v

π
qiqj
ijC (Dqiqj

Cij −D
qjqi
Cji )+ζ{−Θqiqj

ij }γiqiγjqj µ̃qiqjuv djdi

=
∑
qq′

Iqq′uv
µqq

′
uv π

qq′

uvC

µuµv

µuµv
2ZψuAcu

ˆ Λu(min
{
Nuv ,ρuvO δqq

′
uv

}
)

Λu(ρuvC δqq
′

uv )
δqq
′

uv dki +
ˆ Λu(ρuvC δqq

′
uv )

Λu(Nuv)

ki
ρuvC

dki


=
∑
qq′

Iqq′uv µqq
′

uv π
qq′

uvC

1
2ZψuAcu

δqq′uv (Λu(min
{
Nuv, ρ

uv
O δ

qq′

uv

}
)− Λu(ρuvC δqq

′

uv )
)+

= +(2ρuvC )−1
(
Λu(ρuvC δqq

′

uv )2 − Λu(Nuv)2
)+


=:
∑
qq′

Iqq′uv µqq
′

uv π
qq′

uvOCqq
′

uv =
∑
qq′

Iqq′uv µqq
′

uv π
qq′

uvOCqq
′

uv

where

Cqq′uv = 1
2ZψuAcu

δqq′uv (Λu(min
{
Nuv, ρ

uv
O δ

qq′

uv

}
)− Λu(ρuvC δqq

′

uv )
)+
Cqq′uv +(2ρuvC )−1

(
Λu(ρuvC δqq

′

uv )2 − Λu(Nuv)2
)+

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This implies
e∗∗uCv = ω−2∑

qq′
µqq

′

uv π
qq′

uvO

(
Iqq′uv Cqq

′

uv − Iq′qvu Cq
′q
vu

)

Lemma 7. (Auxiliary) Suppose all bankers are ex-ante identical.

Nuv = N := max
{

0, π
01
C

ρC
− π01

O

ρO

}−1 (
π01
O − π01

C

)
(β01 + β10)

(
σ10

ξ
− 1

)

Nuv = N := ρO
π01
O

(
π01
C (β01 − β10)−

(
π01
O − π01

C

)
(β01 + β10)

(
σ10

ξ
− 1

))

N does not depend on ρC and ρOδ01 > N . Additionally

O01
uv = Ou := 1

2ZψAcu
(((δ01

(
ku − Λu(ρOδ01)

)
+ (2ρO)−1

((
Λu(ρOδ01)2 − Λu(max{N, ρCδ01})2

)+
+
(
Λu(min

{
N, ρCδ

01
}

)2 − k2
u

)+
)

)))

C01
uv = Cu := 1

2ZψAcu
(((δ01

(
Λu(N)− Λu(ρCδ01)

)+
+ (2ρC)−1

(
Λu(ρCδ01)2 − Λu(N)2

)+
)))

Proof. (Lemma 7) (Auxiliary) Corollary of Lemma 6. The only nontrivial part is that

ρOδ
01 > N

⇐⇒ ρOδ
01 >

ρO
π01
O

(
π01
C (β01 − β10)−

(
π01
O − π01

C

)
(β01 + β10)

(
σ10

ξ
− 1

))

⇐⇒ 1 > π01
C

π01
O

−
(

1− π01
C

π01
O

)
(β01 + β10)

δ01

(
σ10

ξ
− 1

)

which always holds.

Proof. (Lemma 5) Since bankers are ex-ante identical, Iqq′uv = 1 ⇐⇒ σvq′ − σuq > 0 ⇐⇒ q′ =
1∧ q = 0. Simply insert this Iqq′uv this and insert O01

uv, C01
uv from Lemma 7 into e∗∗uv, e∗∗uCv in Lemma

6 to get the result.

Lemma 8. (Auxiliary) ΓOP <
δ

∆+δΓCR ⇐⇒ N > ρCδ
01 ⇐⇒ ρCδ

01 > N .

Proof. (Proposition 11) By Proposition 10 and Lemma 5,

e→v ω
2 = π01

O O
∑
u

(
µ01
uv − µ01

vu

)+
+ π01

C C
(∑

u

(
µ01
uv − µ01

vu

))+

Notice∑v

∑
u (µ01

uv − µ01
vu) = 0 and so minv

∑
u (µ01

uv − µ01
vu) ≤ 0. Also by out-regularity,∑u (µ01

uv − µ01
vu)

+ =
Mµ∗ for all v. Then min e→v ω2 = π01

O OMµ∗.
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Proof. (Corollary 3) Novation gap is empty. Then by algebra O = δ∗ and Õ = δ∗. Then
EffO/C = 0.

Proof. (Corollary 4) In this case, O = (4ρOZψAc)−1
〈
k2 − JNK2

〉
= (2ρO)−1(k−k)

〈
k2 − JNK2

〉
,

Õ = (2ρO)−1
〈
k − JNK

〉−1 〈
k2 − JNK2

〉
. This is (2ρO)−1

(
k + JNK

)
if k−JNK > 0. Õ is not well-

defined otherwise.
For N < k, there is no novation. Õ = O = (2ρO)−1

(
k + k

)
, EffO = 1, EffC = 0. For N > k,

all contracts are novated. There is no coordination failure. Eff is not well-defined.
For k < N < k, recall N = ρO (δ(1− ΓOP)− ΓOP∆). Then

2̃O = (ρO)−1
(
k +N

)
= (ρO)−1

(
k + ρO (δ(1− ΓOP)− ΓOP∆)

)
= ρ−1

O k + δ(1− ΓOP)− ΓOP∆

Then EffC = 0 and

EffO = ρOρ
−2
O k

ρ−1
O k + δ(1− ΓOP)− ΓOP∆

= k

k +N
∈ (1

2 , 1)

Proof. (Corollary 5) In this case, O = (4ρOZψAc)−1
〈
JNK2 − k2

〉
= (2ρO)−1(k−k)

〈
JNK2 − k2

〉
,

Õ = (2ρO)−1 〈JNK− k〉−1
〈
JNK2 − k2

〉
. This is (2ρO)−1 (JNK + k) if JNK− k > 0. Õ is not well-

defined otherwise.
For N > k, there is no novation. Õ = O = (2ρO)−1

(
k + k

)
, EffO = 1, EffC = 0. For N < k,

all contracts are novated. There is no coordination failure. Eff is not well-defined.
For k < N < k, there is novation. Then N < k < ρCδ

∗, in particular N < ρCδ
∗. Then ΓOP

ΓCR
<

δ∗

∆+δ∗ by Proposition 11. Then ΓOP < ΓCR. Then N = ρC (ΓCR − ΓOP)−1 ΓOP∆ = ΓOP∆
1−ΓOP
ρC

− 1
ρO

.
Then

2̃O = (ρO)−1 (N + k) = (ρO)−1
(
ρC (ΓCR − ΓOP)−1 ΓOP∆ + k

)
= (1− ΓOP) ΓOP∆

1− ΓOP − ρC
ρO

+ k
1
ρO

=⇒ EffC = ρC
N + k

dN

dρC
= ρC

(N + k)
N2

ΓOP∆
1− ΓOP

ρ2
C

= N

N + k

1− ΓOP

ΓCR − ΓOP

andEffO = −ρO
(

1
N + k

dN

dρO
− 1
ρO

)
= ρO

1
N + k

N2

ΓOP∆
1
ρ2
O

+ 1

= N

N + k

1− ΓCR

ΓCR − ΓOP
+ 1
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