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Abstract
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1 Introduction

Many phenomena, such as technology adoption, bank failures, and drug use start

with a few initial “seeds” and spread quickly through social and economic networks.

Understanding how the extent of the spread depends on the initial seeds and the struc-

ture of the network is, therefore, a key policy concern. Some simple contagion processes

in which agents require a single exposure to be infected (e.g., the the classic SIR model

or the independent cascade model due to Kempe et al. (2003)) do not appear to be

particularly sensitive to the location of initial seeds (Akbarpour et al., 2020). On the

other hand, complex contagion processes in which agents might require several expo-

sures to get infected, such as the linear threshold model due to Granovetter (1978),

are very sensitive to initial seeds and can be difficult to analyze, particularly in large

networks. In this paper, we propose a novel and tractable way to analyze the linear

threshold model over networks sampled from a graphon—a general nonparametric net-

work formation model which includes the random graph model due to Erdős and Rényi

(1959) and stochastic block models in which agents belong to one of several commu-

nities. Our motivation for considering sampled networks is that in many applications

detailed data about the network is not available (Breza et al., 2020), but an observer

might nevertheless have a theory about the data-generating process (i.e., the stochastic

network formation model). We, therefore, analyze whether the contagion outcome in

sampled networks can be predicted by exploiting only statistical network information

(captured by the graphon) in the large population regime.

Formally, a graphon is a measurable function W : [0, 1]2 → [0, 1]. In this paper, we

use graphons to represent a stochastic network formation model, however, graphons

also have an interpretation as a limit of a sequence of graphs with increasing number

of nodes (Borgs et al., 2008; Lovász, 2012). According to this latter interpretation,

the [0, 1] interval represents a continuum of heterogeneous agents, each associated with

a label u ∈ [0, 1], so that W (u, v) denotes the level of interaction between labels u

and v. Building on this interpretation, our first contribution is to formally define a

linear threshold contagion model for a continuum of agents interacting according to

a graphon. As in the standard linear threshold model in finite networks, labels in

[0, 1] can be in one of two states: infected and not infected. At time t = 0 a subset

C0 ⊂ [0, 1] of the labels are exogenously infected as seeds (e.g., initial adopters or initial

bank failures).1 In subsequent time steps, labels are infected if they were infected before

or if the fraction of their neighbors who are infected exceeds a label-specific threshold

1We use ⊂ to mean weak and ( to mean strict inclusion.
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τ(u). Formally, a label u ∈ [0, 1] is exposed to infection at time t = 1, 2, 3 . . . if∫
Ct−1

W (u, v)dv∫
W (u, v)dv

> τ(u),

where Ct−1 ⊂ [0, 1] is the set of infected labels at time t− 1; a label is infected at time

t if it was either infected at time t− 1 or exposed at time t.

As the first main result, we show that the outcome of contagion in large networks

sampled from a graphon is well-approximated by the outcome of the graphon contagion

process just defined (Theorems 1a and 1b). More precisely, our results show that

contagion in a graphon can accurately approximate the entire dynamics (and therefore

the speed) of contagion rather than simply the final set of infected agents.

Besides being of independent interest, this convergence result is particularly pow-

erful when we turn to the design of optimal seeding sets. In fact, solving the optimal

seeding problem based on exact network data is a computationally hard problem for

large populations (Kempe et al., 2003). As a second main result, we propose a novel

approach to optimal seeding based on the graphon limiting process. Specifically, we

introduce two classes of optimal seeding problems for graphon contagion processes: the

max-reach problem in which the planner wants to select seeds to maximize the spread

of contagion given a constraint on the measure of the seed set and the min-seed prob-

lem in which the central planner wants to select the smallest seed set that achieves a

target level of contagion. We derive structural properties of the solution to the graphon

seeding problems (Theorem 2) and we show how a planner can exploit such graphon

solutions to design seeding policies for sampled networks.

Our approximation and optimal seeding results are particularly useful if one can

easily compute the outcome of graphon contagion and the solution to the graphon

seeding problems mentioned above. As a third contribution, we show that this is the

case if the graphon has a suitable regularity structure. Specifically, we focus on two

classes of commonly used graphons. First, we consider stochastic block models in

which agents belong to a finite number k of communities (“types”). We show that

contagion in a graphon in this class is equivalent to contagion in an auxiliary finite

network with 2k nodes. As a result, the max-reach problem in a stochastic block

model reduces to an optimization problem with only k variables. This reduction offers

a clear computational advantage since in general the number of communities k is much

smaller than the number of agents. Second, we consider contagion in various structured

graphons with an infinite number of agent types. We give clean characterizations of

the dynamics of contagion and find analytical solutions to the max-reach and min-seed

problems in these structured graphons. Taken as a whole, our illustrations emphasize

the tractability offered by the analysis of contagion in graphons.
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There is a vast literature on the linear threshold model and on complex contagion

more generally. Previous work has analyzed complex contagion in deterministic net-

works (see, e.g., Morris (2000); Kempe et al. (2003); Adam et al. (2012); Lim et al.

(2016)), in partial information settings (see, e.g., Stein et al. (2017); Wilder et al.

(2018); Chin et al. (2022); Eckles et al. (2022)) as well as in stochastic network mod-

els (see, e.g., Watts (2002); Amini (2010); Lelarge (2012); Moharrami et al. (2016)).

Three papers in the latter strand are the closest to our contribution: Jackson and

Storms (2019), Rossi et al. (2017), and Sadler (2020). Closest to our work, Jackson

and Storms (2019) study equilibria of binary coordination games (that are closely re-

lated to threshold contagion) in stochastic block models (a subcase of graphons). They

show that such equilibria generate an “atomic” partition of the network that goes

beyond standard community structure. Our results are complementary to this paper

since (i) the graphon model allows us to explicitly analyze the dynamics of the conta-

gion process; (ii) our solution to the max-reach problem is optimal in the graphon and

(iii) while the exact atomic partition can be challenging to compute in large networks,

the computational tractability of our graphon-based seeding policy is independent of

the sampled network size. The other two papers closest to ours study contagion dy-

namics in the context of a configuration model, in non-strategic (Rossi et al., 2017)

and strategic (Sadler, 2020) settings. Our model is different because instead of the

configuration model, we use the graphon model as our stochastic network formation

process. This choice has several consequences: (i) while the configuration model gen-

erates graphs that are sparse and locally tree-like, graphons encode a large class of

(dense) network formation models, such as stochastic block models which can capture

the assortativity, community structure, nestedness and clustering of social networks;

(ii) we approximate the exact set rather than the total number of infected agents and

(iii) our explicit characterization of the limiting process enables a new approach for

finding the optimal seed set in large networks.

Finally, our work is related to a growing literature that studies the limiting behavior

of network processes by using graphons (see e.g. Vizuete et al. (2020); Caines and

Huang (2018); Gao and Caines (2019)).2 In this literature, Parise and Ozdaglar (2022)

is the closest to our paper. Parise and Ozdaglar (2022) adopt a similar approach to ours

by first defining a limiting process for an infinite population (in that case a graphon

game) and then showing that equilibria of sampled network games (i.e., games played

over finite networks sampled from the graphon) can be well approximated by equilibria

of the limiting graphon game, for large enough population. We note that the threshold

dynamics considered here coincide with the best response dynamics of a coordination

2This strand is closely related to models of global games with a continuum of players. See, for example,
Morris and Shin (2003, Chapter 5.1) and Morris and Shin (2005).
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game (which is an example of a network game). Yet the analysis of Parise and Ozdaglar

(2022) cannot be applied in our setting for three main reasons: (i) Parise and Ozdaglar

consider smooth and convex network games, instead in coordination games agents

have a discrete, {0, 1} set of actions; (ii) coordination games have multiple equilibria

while convergence in Parise and Ozdaglar’s model is guaranteed for games with unique

equilibria and (iii) we consider the entire dynamics given by the threshold model,

instead of only focusing on the equilibrium outcome.

This paper is organized as follows. Section 2 provides an illustrative example of

contagion in a graphon corresponding to the Erdős-Rényi model. Section 3 describes

our model of contagion in graphons and of corresponding contagion in networks sampled

from graphons. Section 4 states a simplified version of our convergence result (for

ease of readability). Section 5 introduces optimal seeding problems for contagion in

graphons. Section 6 discusses applications of our results to stochastic block models,

i.e., the special class of graphons with finite types. Section 7 considers contagion in

graphons with infinite number of types. Section 8 concludes the paper. Appendix A

states a stronger version of the main convergence result. Appendix B contains technical

details for the results in Section 7. Appendix C contains proofs. While in the main

text we consider deterministic thresholds, in Appendix D we discuss an example of

contagion in graphons with random thresholds.

2 An illustrative example

To develop some intuition, we start our analysis by considering contagion in net-

works sampled from an Erdős-Rényi random graph model, which can be seen as a

special case of a graphon where each edge is independently realized with probabil-

ity p ∈ (0, 1]. We here assume that all agents have the same contagion threshold τ .

According to the standard linear threshold model, an agent is exposed at step t if

number of infected neighbours at t− 1

number of neighbours
> τ. (2.1)

Intuitively, for a very large number of agents, by applying the law of large numbers,

we expect that the number of neighbors for each agent should concentrate around its

mean. Recalling that in an Erdős-Rényi model each link is realized with an independent

probability p we can then expect (2.1) to be well approximated by

p× number of infected agents at t− 1

p× n
> τ, (2.2)

which is the condition for contagion in a complete network with edge weights p. Hence,

in the limit of large populations, the contagion condition simplifies significantly.
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To formalize this intuition, we next define a contagion process for infinite popula-

tions by assuming that there is a unit mass of agents, which from here on we identify

with a label in the interval [0, 1],3 and we assume that each label is connected to any

other label with weight p ∈ (0, 1].

We then define a threshold contagion process for such an infinite population as

follows. Initially, in step t = 0, a set C0 ⊂ [0, 1] of labels is infected as seeds. In

each subsequent step t = 1, 2, 3, . . ., a label becomes infected and is added to set Ct

of infected labels at time t when the integral of edge weights with infected neighbors

divided by the label’s total edge weight exceeds the threshold τ . More formally, a label

u ∈ [0, 1] becomes infected at time t if either he was infected at time t − 1 or if he is

exposed at time t, that is, ∫
Ct−1

pdv∫ 1
0 pdv

> τ. (2.3)

In this simple setting, such a model of contagion in a graphon is particularly simple

and provides sharp predictions of agents’ behavior. Denoting by µ the measure of a

set, we obtain:

1. If µ(C0) > τ , then (2.3) holds and all labels become infected at the first step;

2. If µ(C0) ≤ τ , then (2.3) does not hold and no new label becomes infected.

The graphon model predicts a sharp phase transition. If the size of the seed set µ(C0)

is greater than the threshold τ contagion spreads to the entire [0, 1] interval while if

µ(C0) < τ no contagion takes place. Figure 1 suggests that this behavior is predictive

of the contagion outcome in networks sampled from the Erdős-Rényi model (illustrated

for two different choices of p and τ). Specifically, the dashed line in Figure 1 shows

the fraction of agents that are infected at the end of the contagion process in the

graphon model as a function of the size µ(C0) of the initial seed set. The colored lines

show the fraction of agents that are infected at the end of the contagion process in

networks of different sizes n, sampled according to the Erdős-Rényi model when the

initial seed set is composed of n×µ(C0) randomly selected agents. Each line represents

the average of infected agents over 50 different network realizations. We can see that

for larger n the behavior in the sampled network becomes more and more aligned with

the one predicted from the graphon model. In the rest of the paper, we show that

the intuition from this simple Erdős-Rényi example can be applied more generally to

networks sampled from a graphon.

3Henceforth, we use the term “label” to refer to the infinite population setting. The term “agent” is
reserved for finite populations.
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Figure 1: Final fraction of infected agents as a function of the measure C = µ(C0) of the initial seed set size
C0 for an Erdős-Rényi graphon and for networks of size n sampled from it (averaged over 50 repetitions) for
different values of p and τ .

3 A model of threshold contagion in graphons

In this section, we consider a general class of stochastic network formation processes

by using the graphon framework introduced in Lovász (2012, Chapter 10). We first

define graphons and sampled networks. We then introduce threshold contagion in a

graphon. Finally, we describe threshold contagion in a sampled network.

3.1 Graphons and sampled networks

A graphon is a measurable function W : [0, 1]2 → [0, 1] that can be used to describe

a probability distribution over the space of networks. The following definition formally

connects graphons to stochastic network formation models and illustrates how one can

sample from the graphon distribution to construct a sampled network.

Definition 1 (Sampled network). Given any graphon W and an arbitrary number n of

nodes, uniformly and independently sample n labels {u(n)
i }ni=1 from [0, 1] and construct

a sampled network by randomly connecting nodes i, j ∈ {1, . . . , n} with Bernoulli

probability W (u
(n)
i , u

(n)
j ). Let A(n) ∈ {0, 1}n×n be the adjacency matrix of such a

sampled network.

In Definition 1, the value W (u, v) of the graphon encodes information about the

strength of interaction between two arbitrary labels u and v. We say that two labels

u and v have the same type if W (u, y) = W (v, y) and W (x, u) = W (x, v) for all

x, y ∈ [0, 1], that is if u and v interact in the same way with the rest of the labels.

The Erdős-Rényi model described in Section 2 can be obtained as a special case of

Definition 1 by selecting the constant graphon W (x, y) = p. Note that in this case,

all labels have the same type. In the following example, we illustrate how graphons

can be used to model stochastic block models (SBMs), which have a finite number of

different types.
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Example 1 (Stochastic block model). Consider networks formed according to a stochas-

tic block model. Agents are divided into k communities and denote by πh the prob-

ability that a random agent belongs to the community h, with
∑k

h=1 πh = 1. Agents

form links with Bernoulli probability wh1,h2 ∈ [0, 1] depending on their communities

h1, h2. In many social networks, for example, agents interact with a higher probability

if they are in the same community and a smaller probability if they belong to different

communities. Such a community structure can be generated from a piece-wise constant

graphon WSBM constructed as follows: Partition [0, 1] into k disjoint intervals of labels

{Ih}kh=1, with µ(Ih) = πh, and set

WSBM(u, v) = wh1,h2 if u ∈ Ih1 , v ∈ Ih2 .

By construction, any two labels belonging to the same community have the same type.

Hence in stochastic block models, we can use the words “community” and “type”

interchangeably. For example, Figure 2 shows three networks obtained by randomly

partitioning n agents into two communities (red and blue) with probabilities πred =

0.40 and πblue = 0.60 and then connecting each pair of agents in the same red or

blue community with Bernoulli probability wrr = wbb = 0.7, red to blue agents with

probability wbr = 0.4 and blue to red agents with zero probability.

Finally, graphons can be used to encode network formation processes with an infinite

number of types, as the next example shows.

Example 2 (Location Model). Suppose that agents (e.g., homeowners or politicians) are

located along a [0, 1] interval (e.g., a street or a political spectrum) and the interaction

between agents i and j is a decreasing function of their distance (e.g., travel time

or political differences). If agents interact with a likelihood that depends on relative

position then there is a continuum of types, each type corresponding to a specific

location. An example of such a graphon is given in Section 7.

3.2 Threshold contagion in graphons

We now define a threshold contagion process in a graphon W : [0, 1]2 → [0, 1], with

an initial seed set C0 ⊂ [0, 1] and a threshold function τ : [0, 1]→ [0, 1].4 Let

d(u,X) :=

∫ 1

0
W (u, v)1X(v)dv

be the mass of neighbours of label u whose labels are in X ⊆ [0, 1], namely the degree of

u with labels in X. Also denote d(u) = d(u, [0, 1]) in short. We are primarily interested

4In our model we focus on deterministic thresholds. We discuss in Appendix D how results can be
generalized to thresholds sampled uniformly at random.
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Figure 2: Top: three sampled networks from the stochastic network formation process described in Example 1
for networks of sizes n = 10, 20, 80. Bottom left: Illustration of the graphon W (u, v) in Example 1 as a
function of both u and v (a linear grayscale colormap is used with white associated to W = 0 and black to
W = 1). Bottom right: a schematic of the interaction among the communities in Example 1; nodes indicate
communities, node labels are fractions of agents in the communities, arrows indicate the probability of an
agent from a community interacting with agents from another community.

in the infected set of labels at time t denoted by Ct. At every step t ≥ 1 each label

u ∈ [0, 1] gets infected, and is added to the infected set Ct, if either

• the label was infected at the previous stage, that is, u ∈ Ct−1; or

• the label belongs to the exposed set, denoted by Ĉt, which happens when enough

of its neighbors are infected, i.e., d(u,Ct−1) > τ(u)d(u).

Hence the set of infected labels at time t is defined as Ct = Ct−1 ∪ Ĉt, that is, the

union of previously infected and exposed labels. We denote by C∞ = ∪∞t=0Ct the final

outcome of contagion and by µ(C∞) the reach or spread of contagion (i.e. the measure

of C∞).

3.3 Threshold contagion in sampled networks

The graphon contagion process in Section 3.2 is defined for an infinite population.

We next define contagion in sampled networks of finite size n constructed from the

graphon according to Definition 1. As in Definition 1, we add superscript (n) in our

notation to refer to the sampled network of size n and subscript i to agent i. Let

[n] = {1, 2, ..., n} denote the set of agents in a finite population of size n. We define

C
(n)
0 := {i ∈ [n] | u(n)

i ∈ C0}
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as the sampled initial seed set, i.e., the set C
(n)
0 ⊂ [n] of agents whose label belongs to

C0. Similarly, we can define the threshold of the agent i as the threshold of an agent

with label u
(n)
i , i.e.,

τ
(n)
i := τ(u

(n)
i ).

For Y ⊂ [n], let d
(n)
i (Y ) stand for the number of neighbors of i in Y in the sampled

network. Denote d
(n)
i = d

(n)
i ([n]) the degree of i in short.

Contagion in the sampled network evolves according to the standard linear thresh-

old model of contagion over finite networks. Denoting by C
(n)
t the set of infected agents

at time t, an agent in the sampled network is infected at t ≥ 1 if either

• the agent was infected at the previous stage, that is, i ∈ C(n)
t−1; or

• the agent belongs to the exposed set, denoted by Ĉ
(n)
t , which happens when enough

of its neighbors are infected, i.e., d
(n)
i (C

(n)
t−1) > τ

(n)
i d

(n)
i .

As in the graphon case, we let C
(n)
∞ = ∪∞t=0C

(n)
t be the set of infected agents at

convergence. Note that in finite networks convergence happens in at most n steps.5

4 Convergence results

We now show that with high probability one can infer properties of the infected

set of agents in the sampled network (C
(n)
∞ ) from the infected set of labels in the

graphon process (C∞). To this end, we make the following regularity assumption on

the graphon, the threshold function, and the seed set.

Assumption 1. The set C0 is measurable. The threshold function τ(u) and the

graphon W (u, v) are continuous.

Assumption 1 is somewhat strong as it rules out natural discontinuities (e.g., in

stochastic block models), but it allows us to state our main convergence result suc-

cinctly. In Appendix A, we relax Assumption 1 to allow for these discontinuities and

state a stronger version of the results presented in the main text. For simplicity of

exposition, we separate our subsequent analysis in two parts: we first derive a conver-

gence result about nodes that are infected in the continuum process (Theorem 1a) and

then a result about nodes that are not infected in the continuum process (Theorem 1b).

Together these two theorems allow us to derive conclusions about the final outcome of

contagion in sampled networks based only on the outcome in the continuum process.

Specifically, our first result guarantees that when n is large, almost all agents whose

labels are in C∞ get infected with high probability.

5Contagion is a monotone process. If at any time step, no new agent is infected, then no agent will get
infected at any subsequent time steps. Hence, the contagion process stops after at most n steps.
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Theorem 1a. Suppose that Assumption 1 holds. For all ε, κ > 0, there exists N ε,κ and

a measurable set Cε∞ with Cε∞ ⊂ C∞, µ (Cε∞) ≥ µ (C∞)− ε such that for all n > N ε,κ,

with probability at least 1− κ, all sampled agents whose label is in Cε∞ are infected in

the sampled network.

Our second main result shows that, conversely, if a label is not infected in the

graphon process (i.e. u ∈ [0, 1]\C∞), then, for n large enough, with high probability

the agent with that label is also not infected in the sampled process. To this end,

note that the limiting set D∞ := [C∞]c of labels that are not infected is a cohesive set

(Morris, 2000), that is, even if all the agents outside D∞ are infected, the agents in

D∞ are not. Mathematically, for any u ∈ D∞

d(u, [D∞]c)− τ(u)d(u) ≤ 0. (4.1)

To pin down the set of agents whose labels are not infected, we need a condition

that is slightly stronger than (4.1). Let us define D as the set of all measurable subsets

of D∞ for which (4.1) holds strictly. Formally,

D = {D ⊂ D∞ | d(u,Dc)− τ(u)d(u) < 0 ∀u ∈ D, } (4.2)

and let D̄∞ = ∪D∈DD. Note that D̄∞ may not be measurable, but we can define

µ∞ = supD∈D µ(D). We can now state the following theorem.

Theorem 1b. Suppose that Assumption 1 holds. For all ε, κ > 0, there exists N ε,κ

and a measurable set D̄ε
∞ with D̄ε

∞ ⊂ D̄∞, µ
(
D̄ε
∞
)
≥ µ∞−ε such that for all n > N ε,κ,

with probability at least 1− κ, all sampled agents whose label is in D̄ε
∞ are not infected

in the sampled network.

Figure 3 illustrates the statements of Theorems 1a and 1b. Note that the set of

agents whose labels are in C∞ \ Cε∞ and D̄∞ \ D̄ε
∞ for which the theorems are silent

can be made arbitrarily small in a large enough sampled network. However, there is

potentially a “gray area”: the behavior of agents whose label falls into D∞ \ D̄∞ is

not pinned down by the graphon model. To see why, note that these labels are not

infected because condition (4.1) holds with equality. Therefore, even in large samples,

agents whose labels are in D∞ \ D̄∞, can tip towards being infected or not infected

due to any randomness in the realization of links.

It is important however to make two remarks. First, once C∞ (and thus D∞)

has been calculated, it is straightforward to verify whether D∞ = D̄∞, in which case

the graphon analysis applies to all labels except for a measure that vanishes with

n. Second, it is possible to derive sufficient conditions for D∞ = D̄∞ to hold (as

discussed in Appendix A). Putting both theorems together, we can conclude that, as
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Figure 3: Illustration of Theorems 1a and 1b. The line segment denotes the [0, 1] set of labels and the nodes
are agents in the sampled networks. Filled nodes are either infected agents (red) or not infected agents (blue).
The status of agents with empty nodes (labelled with question marks) is not predicted by Theorems 1a and
1b. V n(X) is the set of agents in the sampled networks whose label belongs to X ⊆ [0, 1].

long as D∞ = D̄∞, for any ε > 0 there is N large enough such that approximately

n × [µ(C∞) ± ε] agents are infected in any sampled process with n > N agents. In

other words, the model of contagion in graphons is a good approximation of network

contagion in any large enough sampled network.

The proofs of Theorems 1a and 1b, which use concentration inequalities and the

notion of cohesive sets, are given in Appendix C.

5 Optimal seeding problems

Our result in Section 4 shows that the outcome of contagion in a graphon is a good

approximation of the outcome of contagion in networks sampled from the graphon.

Such convergence result motivates a new approach to intervention design where in-

terventions are designed based on the graphon limit and then applied to the sampled

networks (instead of being directly designed for the sampled network, which is a com-

putationally intensive procedure and requires exact network knowledge). This new

approach is advantageous if one can easily compute the outcome of graphon contagion

and plan optimal interventions for it. We show that this is the case by focusing on two

classes of optimal seeding problems for graphons as described next. The tractability

of these problems is discussed in Sections 6 and 7 for graphons with finite types and

infinite types, respectively.

5.1 Two optimal seeding problems in graphons

To keep the notation simple, from here on, given a graphon W (u, v) and threshold

function τ(u), we denote by f(C0) the measure of the contagion outcome C∞ cor-

responding to the initial seed set C0 ⊂ [0, 1]. We next define two optimal seeding

problems in graphons: the max-reach problem and the min-seed problem.
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1. Max-reach: The first problem we consider is to find the seed set that maximizes

final contagion.6 Suppose that the initial seed can be at most of measure ρ > 0.

We define the max-reach contagion problem as

f∗ρ := sup
C0⊂[0,1]

f(C0)

s.t. µ(C0) ≤ ρ.
(5.1)

Correspondingly, we say that a set C0 with µ(C0) ≤ ρ is an ε-optimal seed for

the max-reach problem if f(C0) ≥ f∗ρ − ε. A seed set C0 is optimal for max-reach

if it is ε-optimal with ε = 0.

2. Min-seed: The second problem we consider is to find the minimum size of the

initial seed set that induces a desired level m ∈ [0, 1] of final contagion.7 We

formalize this notion in the min-seed contagion problem as follows

r∗m := inf
C0⊂[0,1]

µ(C0)

s.t. f(C0) ≥ m.
(5.2)

We call a set C0 optimal for min-seed if f(C0) ≥ m and µ(C0) = r∗m. We call

a set C0 limit-optimal for min-seed if µ(C0) = r∗m and there exists a decreasing

nested sequence of sets (Ck0 )∞k=1 such that f(Ck0 ) ≥ m for all k and ∩kCk0 = C0.

The case m = 1 is of special interest as it corresponds to complete contagion. In

the following, we call r∗1 the resilience of a contagion process and a corresponding

limit-optimal seed a sensitive infection region.

While the max-reach and min-seed problems are inspired by corresponding problems

studied over finite networks, we note that the graphon model can give rise to new

interesting phenomena because contagion in graphons evolves over a continuum of

labels.

Example 3. Consider a “hierarchical” graphon in which W (u, v) = p× 1v<qu for some

q > 0 (see Figure 4), and τ(u) = τ with τq < 1. In this graphon, lower-indexed

labels have a lower degree and higher-indexed labels have a higher degree. Take a seed

C0 = [0, ε) for some arbitrarily small ε > 0. Note that d(u) = pqu and d(u,C0) =

p×min{ε, qu}. Hence

d(u,C0) > τd(u) ⇔ min{ε, qu} > τqu ⇔ u <
ε

τq
.

Consequently, C1 = [0, ετq )∩ [0, 1] and iterating contagion we get Ct = [0, ε 1
(τq)t )∩ [0, 1]

6In the context of finite networks, this problem was introduced by Kempe et al. (2003).
7In the context of finite networks, this problem was introduced by Long and Wong (2011).
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W (u, v) = p region

u

v

v = qu

Figure 4: Density plot of the “hierarchical” graphon in Example 3.

leading to f(C0) = f([0, ε)) = [0, 1]. That is, for any ε > 0, the seed [0, ε) leads to

complete contagion. On the other hand, {0} = ∩ε[0, ε) does not lead to any contagion

because it has zero measure. This example shows that the function f∗ρ can have a

discontinuity at 0: in this case, f∗ρ = 1 for all ρ > 1 but f∗0 = 0. Equivalently, this

process has zero resilience (r∗1 = 0) and the zero-measure set {0} is a sensitive infection

region, that is, it is limit-optimal for the min-seed problem with m = 1 (this can be

verified by setting Ck0 = [0, 1
k ) for all k.

5.2 Structure of max-reach and min-seed

We conclude this section with a result that describes the general structure of solu-

tions to the max-reach and min-seed problems.

Theorem 2. The following hold for optimal seeding problems:

i) f∗0 = 0 and r∗0 = 0.

ii) f∗ρ − ρ is increasing in ρ for ρ ∈ [0, r∗1) and f∗ρ ≡ 1 for ρ ∈ (r∗1, 1].

iii) Let m∗1 := supρ<r∗1 f
∗
ρ . Then m − r∗m is increasing in m for m ∈ [0,m∗1) and

r∗m ≡ r∗1 for m ∈ (m∗1, 1].

Theorem 2 makes three intuitive claims. First, when the seed budget is zero, there

is no contagion. Second, having a larger budget always increases the possible extent

of contagion above and beyond what is added to the budget. Therefore the spread of

contagion is supermodular in the initial seed sets when thresholds are deterministic

(Jackson and Storms, 2019). Third, complete contagion can be achieved by seeding a

set of measures r∗1. The claims in Theorem 2 are illustrated in Figure 5.
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Figure 5: Structure of optimal seeding problems (Theorem 2).

6 Contagion in graphons with finite types:

Stochastic block models

As we saw in Section 2, in the case of the Erdős-Rényi model, the outcome of

contagion in a graphon can easily be computed analytically. In this section, we discuss

the computational tractability of graphon contagion for the stochastic block model

introduced in Example 1. We show that in stochastic block models one can recover

the graphon contagion process exactly from an auxiliary contagion process defined over

a finite network with twice as many nodes as the number of communities. Reducing

the graphon contagion process to an auxiliary network contagion process is clearly

advantageous because the number of communities is typically much smaller than the

number of agents in the sampled network. Finally, we show how the reduction to

the auxiliary contagion process can help solve the max-reach contagion problem for

stochastic block models.

6.1 Contagion dynamics in graphons with finite types

We start our analysis by constructing an auxiliary network. Given a stochastic

block model WSBM with k communities {Ih}kh=1 and any seed set C0, we construct

a network with 2k nodes. Let i be the index of the nodes in the auxiliary graph,

and we distinguish two cases. Each node i ∈ {1, . . . , k} represents the set of initially

uninfected labels in the community 1, . . . , k, which has measure bi := µ(Ii \C0). Each
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Figure 6: Left: Schematic of the interaction among the two communities in the graphon of Example 1.
Nodes indicate communities 1 and 2; node labels show the fraction of agents in each community; labeled
arrows represent the probability that an agent from the source community is interacting with an agent from
a destination community. Right: Corresponding auxiliary network with seed set {3, 4}.

node i ∈ {k + 1, . . . , 2k} represents the set of seeds in community 1, . . . , k, which has

measure bi := µ(Ii−k ∩ C0). We then connect nodes in the auxiliary network with

weight w′(i,j) = w{i,j[k]}bj (where j[k] := j if j ≤ k and j[k] := j − k otherwise). Note

that an edge in this graph means that i can be infected by j. Let Aaux ∈ R2k×2k be

the adjacency matrix of this auxiliary network. Figure 6 shows the auxiliary network

corresponding to the stochastic block model in Example 1. Armed with this notation,

we can state the following result which describes the graphon contagion process for

stochastic block models.

Theorem 3. Consider a graphon process evolving over a stochastic block model WSBM

with k communities, seed set C0 and in which all labels belonging to the same community

have the same threshold τh for h ∈ {1, . . . , k}. Let Caux
t be the set of infected nodes at

time t in the finite contagion process evolving over the auxiliary network Aaux ∈ R2k×2k

corresponding to WSBM, when the initial seed set is {k + 1, ..., 2k} and the remaining

nodes have thresholds τ ′i = τi for all i ∈ {1, . . . , k}. Then node i ≤ k is infected at time

t (i.e. i ∈ Caux
t ) in the auxiliary network if and only if the entire block Ii is infected at

time t in the graphon process. Conversely, node i ≤ k is not infected on the auxiliary

network if and only if Ii \ C0 is not infected.

Theorem 3 says that in order to know whether a label in a particular community

has been infected in a stochastic block model, we only need to know whether the entire

community has been infected by looking at the auxiliary network. Note that contagion

in the auxiliary network converges in at most k iterations. Hence, an immediate corol-

lary of Theorem 3 is that graphon contagion in the stochastic block model converges in

as many iterations as the number of communities. In Figure 7, we present a simulation

illustrating the relation between graphon contagion and contagion in sampled networks

for a stochastic block model with five communities. As given by Theorems 1a and 1b,
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Figure 7: Top: Schematic of the interaction among the five communities of a stochastic block model graphon.
Nodes indicate communities; node labels show the fraction of agents in each community; labeled arrows
represent the probability an agent from the source community interacting with an agent from a destination
community. Bottom: Comparison between contagion in networks with n agents sampled from stochastic
block model and contagion in the corresponding graphon for different values of n. Three plots on the bottom
left: the evolution of the fraction of infected individuals in 10 repetitions for each value of n. Bottom right
plot: the average evolution compared with the graphon. We set τ = 0.16 and initial seed set C0 = [0, 0.1]
corresponding to seeding half of the labels in community 1.

when sampled networks have a large number of agents, contagion in sampled networks

closely approximates contagion in a graphon.

6.2 Optimal seeding in stochastic block models

We can now combine insights from Theorems 1a, 1b and 3 in order to analyze the

max-reach contagion problem (introduced in Section 5) for stochastic block models. Us-

ing Theorem 3, we can reformulate the max-reach contagion problem as an optimization

problem in k variables. Specifically, for any initial seed C0, let ci := µ(C0 ∩ Ii) denote

the measure of labels in block i that belong to the initial seed. Recalling that πi is the

fraction of labels that belongs to community i, the vector b (defined in Section 6.1) has

components

bi(c) =

πi − ci if i = 1, . . . , k

ci if i = k + 1, . . . , 2k.
(6.1)

Let Aaux(c) ∈ R2k×2k be the adjacency matrix of the auxiliary network obtained for

b(c) as in (6.1) and for each label i let fi(c) be equal to one if label i is infected at

the end of contagion over the network with the auxiliary matrix Aaux(c) ∈ R2k×2k and
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initial seed set {k + 1, . . . , 2k}. It then follows from Theorem 3 that

f∗ρ = max
c∈[0,1]k|

∑
i ci=ρ

k∑
i=1

(πi − ci)fi(c) + ρ. (6.2)

In other words one only needs to decide which portion ci of the budget to allocate to

each community i, which is a k dimensional optimization problem. Let the vector c∗

be the maximizer of (6.2). Then any subset C∗0 of [0, 1] such that µ(C∗0 ∩ Ii) = c∗i is

an optimal seed for max-reach problem. Using Theorems 1a and 1b, the solution to

the max-reach contagion problem translates into the following graphon-based seeding

policy for maximizing contagion in sampled networks: the planner should seed n× c∗i
randomly selected agents for each community i.

Our seeding policy based on contagion in graphons has two advantages over solving

the original seeding problem in the sampled network. First, solving the optimal seeding

problem in the sampled network requires knowledge of the realized sampled network,

which may be unavailable to the planner. Instead the solution of max-reach problem

(6.2) for the stochastic block model is only a function of the relevant parameters of the

network formation model (i.e., the connectivity between different communities). Sec-

ond, solving the optimal seeding problem in the sampled network requires the selection

of a set of n × ρ agents from a possible set of n agents. This is a computationally

intractable problem for large n (Kempe et al., 2003). On the other hand, a solution

to max-reach problem (6.2) for the stochastic block model requires finding the optimal

weight of the edges in the auxiliary network Aaux(c) and is thus a problem in k instead

of n variables. Since typically k ≪ n, even brute force approaches to solving the

max-reach problem reformulation (6.2) are computationally tractable.

6.3 Numerical illustration

To illustrate the seeding policy suggested by the graphon model, we solved the

max-reach problem (6.2) for the stochastic block model in Figure 7 with a budget

ρ = 0.06. In this case we obtained c∗1 = 0.04, c∗2 = c∗3 = 0, c∗4 = 0.02 as the optimal

solution, meaning that if only 6% of the agents can be seeded then for the graphon

model it is optimal to seed 4% of the agents in community 1 and 2% of the agents

in community 4. Figure 8 (left) shows the performance of this policy when applied

to networks sampled from the stochastic block model in Figure 7. In the numerical

experiment, for each random network with n nodes, we sampled 300 networks. For

each of these sampled networks, we selected as seed 0.04n agents at random from

community 1 and 0.02n agents at random from community 4 and then computed the

fraction of infected agents at the end of the contagion process. The solid magenta line
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Figure 8: Fraction of asymptotically infected agents as a function of population size when the seed set
is designed according to the graphon-based seeding policy (left, magenta), a greedy policy (middle, blue)
or random seeding (right, cyan). For each population size n we constructed 300 sampled networks, thus
obtaining a distribution of the fraction of asymptotically infected agents. We here report the median of such
distribution (solid line) and the quantiles as the shaded region.

shows the median over 300 repetitions. For comparison, the middle and right plots

show the median of the same quantity when a greedy and random policy is used. In

the greedy policy, suggested by Kempe et al. (2003), the seed set is constructed by

iteratively adding one agent at a time (up to 0.06n agents) and at each time selecting

the agent that has the highest marginal impact on the contagion outcome. In the

random policy, 0.06n seeds are selected uniformly at random. In all plots, the shaded

area shows different quantiles of the corresponding distribution. Note that no shaded

magenta area is visible for n > 100 because the distribution under the graphon policy

is tightly concentrated around one, showing that the seeding policy suggested by the

graphon model is optimal for this example. This is clearly not the case for the greedy

and random policies, whose performance decreases sharply with n.8

7 Contagion in graphons with infinite types

Stochastic block models involve a finite number of types. Consequently, the optimal

seeding problem can be reduced to finding the fraction of each type that needs to be

seeded, as discussed in Section 6.1. A continuum of types is a more natural assumption

in many contexts, such as spatial location, income and wealth, or political views. These

continuous characteristics can determine the intensity of interactions in a variety of

settings. For the sake of tractability, in the following we focus on a special class of such

infinite type models that give rise to interval contagion, as formalized next.

Definition 2. (W, τ) admits interval contagion if C1 is an interval for any interval seed

set C0. (W, τ,C0) is an interval contagion process if (W, τ) admits interval contagion

8This is not a contradiction with Kempe et al. (2003) since their results are derived for contagion processes
where agents’ thresholds are sampled uniformly at random, while here we consider a homogeneous threshold
τ = 0.16. See Appendix D for the analysis of graphon contagion with uniform random thresholds.
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and C0 is an interval.

In words, in an interval contagion process, the seed set is an interval of labels and

the set of infected labels at any step is also an interval. In light of our interpretation of

a continuum of types/labels, seeding an interval corresponds to targeting agents with

similar characteristics. This can be seen as a social planner’s preference against com-

plexity. The property that any infected interval weakly grows into a new interval (as

opposed to generating disconnected infected sets) reflects the presence of homophily:

it is easier for labels to infect labels that are closer (i.e, have a similar location, so-

cioeconomic status or ideology). In the remainder of this section, we provide further

details on the interval contagion process and its link to homophily, we formalize optimal

seeding problems for interval contagion, and we illustrate our results in the context of

specific graphons commonly used in the literature. In Appendix B we discuss interval

contagion in more detail, characterize general solutions to optimal seeding problems

under relatively weak conditions, and revisit the illustrative examples presented in this

section.

7.1 Interval contagion in graphons

The following is an immediate necessary and sufficient condition for (W, τ) to admit

interval contagion.

Assumption 2. There exist cutoff iterators α : [0, 1]2 → [0, 1] and β : [0, 1]2 → [0, 1]

such that for all (a, b) ⊂ (0, 1), for all u ∈ (0, a] and v ∈ [b, 1),

d(u, (a, b)) > τ(u)d(u) ⇐⇒ u > α(a, b)

d(v, (a, b)) > τ(v)d(v) ⇐⇒ v < β(a, b).

The idea behind such cutoff iterators is illustrated in Figure 9. Consider an interval

(a0, b0) of infected labels and a label u ≤ a0 that is “to the left” of a0. The existence

of cutoff functions entails that u ≤ a becomes infected by (a0, b0) if and only if u >

α(a0, b0). Analogously, label u ≥ b0 “to the right” of b0 gets infected by (a0, b0)

whenever u < β(a0, b0).9 As a result, in the first step of the contagion process a label

u is infected if and only if a1 < u < b1, resulting in C1 being an interval.

Next, we formalize the link of interval contagion to homophily. Let d∗(u) ≡
τ(u)d(u). We focus on (W, τ) such that d∗ is bounded away from zero.10

9Lemma 5 in Appendix B shows that α(a, b) is increasing, right-continuous in a and decreasing in b, while
β(a, b) is increasing, left-continuous in b and decreasing in a.

10If τ(u) = 0, u gets infected regardless and so u can be included into the seed. If d(u) = 0, the label u is
isolated and irrelevant. As a result, it is innocuous to assume that d∗ is nonzero.
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Figure 9: Interval contagion process. C0 = (a0, b0) is the seed set. Cutoff iterators α and β take the contagion
process to the final infected set (a∗, b∗) in steps indicated by the arrows, so that C1 = (a1, b1), C2 = (a2, b2),
etc.

Definition 3. We say that a graphon W admits homophily if for all v, W (u, v) is in-

creasing in u ∈ [0, v] and decreasing in u ∈ [v, 1]. We say that (W, τ) admits normalized

homophily if W ∗(u, v) ≡ W (u,v)
d∗(u) inf(d∗) admits homophily.

It is clear that if (W, τ) admits normalized homophily, then Assumption 2 holds.

Moreover, the next example shows that when d and τ are constant, homophily suffices

for Assumption 2 to hold.

Example 4. (Regular homophilic graphons) Suppose that W admits homophily and

d(u) ≡ d and τ(u) ≡ τ are constants. Then, by homophily, d(u, (a, b)) is increasing

on u ≤ a and decreasing on v ≥ b. Therefore cutoff iterators exist, and are given by

d(α(a, b), (a, b)) = τd (or α(a, b) = 0 if d(0, (a, b)) > τd) and d(β(a, b), (a, b)) = τd (or

β(a, b) = 1 if d(1, (a, b)) > τd).

In Appendix B, we provide a condition on the cutoff iterators (called the single-

crossing property) that guarantees that the interval contagion process on the graphon

is particularly tractable. Intuitively, such single-crossing property guarantees that for

any fixed right extreme b of the seed set [a, b], the contagion behavior depends in

a monotone way on the left extreme a and vice versa for any fixed left extreme a

contagion is monotone in b. This is particularly useful because, under this assumption,

Proposition 3 in Appendix B proves that the outcome of contagion can only take one

of four forms

• No contagion: the final infected set is the same seed set;

• Right-only contagion: the final infected set is [a0, 1);

• Left-only contagion: the final infected set is (0, b0];

• Complete contagion: the final infected set is (0, 1) (either starting “to the right”

or “to the left”).

Under the single-crossing property we are able to analytically tackle max-reach and

min-seed problems in a variety of graphons, under the additional constraint that the

initial seed is an interval, as formalized next.
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Interval max-reach problem For interval contagion, the max-reach problem

(5.1) can be reformulated as the interval max-reach problem with ρ

f̃∗ρ := sup
a0∈[0,1]

f([a0, a0 + ρ]), (7.1)

where the only optimization variable is the left extreme of the seed set.

Interval min-seed problem For interval contagion, the min-seed problem (5.2)

can be reformulated into the interval min-seed problem with m > 0 in the following

way:

r̃∗m := inf
a0,b0∈[0,1]2

b0 − a0

s.t. f([a0, b0]) ≥ m

a0 ≤ b0,

(7.2)

where the only optimization variables are the extremes a0, b0 of the seed interval set.

We provide explicit solutions to the interval max-reach and interval min-seed prob-

lems for general graphons satisfying the single-crossing property in Appendix B, we

next discuss the application of such results to some illustrative examples.

7.2 Analytical examples

Example 5 (Growing Uniform Attachment (Borgs et al., 2011)). Consider the following

network formation process: In each period, a new node arrives, and then every pair

of non-adjacent nodes is connected with probability 1
n . This network can be sampled

from the graphon WGUA(u, v) = 1−max{u, v}, illustrated in Figure 10(i).

In this graphon, any label v is most connected to labels less than or equal to v

and labels sufficiently close to v are highly connected to v, in line with our homophily

interpretation. Lower labels are more connected to all labels, but especially to other

lower-label labels, whereas the reverse holds for higher labels. Thus this graphon

represents a hierarchical structure. A bit of tedious algebra shows that d(u) = 1
2(1−u2).

Pick a constant τ and observe that

W (u, v)

d∗(u)
=

(
2

τ

)(
1−max{u, v}

1− u2

)
is single-peaked as a function of u, with the peak at v. So (WGUA, τ) admits normalized

homophily, and hence interval contagion.

Corollary 1. Suppose that W = WGUA and τ(u) = τ . Cutoff iterators exist. The
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Figure 10: Growing Uniform Attachment (GUA) graphon (Borgs et al., 2011). Left: density plot for the
GUA graphon. Middle: solution to the interval max-reach problem (7.1). Right: solution to the interval
min-seed problem (7.2). Thresholds are set at τ(u) = τ = 0.75.

solution to the interval min-seed problem is:

r̃∗m =


τ

2−τ −
1−
√
τ2+(1+τ)(1− τ

2−τ )2

1+τ if m > τ
2−τ

m− 1−
√
τ2+(1+τ)(1−m)2

1+τ if τ
2−τ > m > 1−

√
1− τ

m if 1−
√

1− τ > m

.

The following set is limit-optimal for the interval min-seed problem:

C∗0 =


[

τ
2−τ − r̃

∗
m,

τ
2−τ

]
if m > τ

2−τ

[m− r̃∗m,m] if τ
2−τ > m > 1−

√
1− τ

[0,m] if 1−
√

1− τ > m

.

Figure 10(ii) shows the solution to the max-reach problem and Figure 10(iii) shows

the solution to the min-seed problem for τ = 0.75. Figure 11 shows a comparison of

seeding in sampled networks based on the graphon analysis versus greedy or random.

For this illustration we fixed τ = 0.75 and selected a seed budget of ρ = r̃∗1. The

optimal seed set in the graphon is therefore C∗0 =
[

τ
2−τ − r̃

∗
1,

τ
2−τ

]
and leads to complete

contagion. In the graphon policy, to compute the seed set in a sampled network

we seeded all agents with u
(n)
i ∈ C∗0 . Note that the size of the seed set is random

(asymptotically converging to ρn). To have a fair comparison we set the random and

greedy seed sets to have exactly the same number of agents as the graphon seed set in

each realization.

We now return to the Location Model described in Example 2.

Example 6 (Location Model (Parise and Ozdaglar, 2022)). The Location Model can

be represented by the graphon WLOC(u, v) = (min{u, v})(1 − max{u, v}), illustrated
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Figure 11: Growing Uniform Attachment (Borgs et al., 2011). Fraction of asymptotically infected agents as
a function of population size when the seed set is designed according to the graphon-based seeding policy
(left, magenta), a greedy policy (middle, blue) or random seeding (right, cyan). For each population size
n we constructed 50 sampled networks, thus obtaining a distribution of fraction of asymptotically infected
agents. We here report the median of such distribution (solid line) and the quantiles (from 0.2 to 0.8) as
shaded region.

in Figure 12(i).

Some algebra shows d(u) = 1
2u(1− u). Pick constant τ and observe that

W (u, v)

d∗(u)
=

(
2

τ

)(
min{u, v}(1−max{u, v})

u(1− u)

)
is single-peaked in u, with the peak at v. So (WLOC , τ) admits normalized homophily

and hence interval contagion.

Corollary 2. Suppose that W = WLOC and τ(u) = τ . Cutoff iterators exist. The

solution to the interval min-seed problem is:

r̃∗m =


1
2

(
τ +

√
τ2 + 4(1− τ)2

)
− (1− τ) if m > τ

1
2

(
τ +

√
τ2 + 4(1−m)2

)
− (1−m) if τ > m > 1−

√
1− τ

m if 1−
√

1− τ > m

.

The following is limit-optimal for interval min-seed problem:

C∗0 =


[τ − r̃∗m, τ ] if m > τ

[m− r̃∗m,m] if τ
2−τ > m > 1−

√
1− τ

[0,m] if 1−
√

1− τ > m

.

or the symmetric intervals around 0.5.

Figure 12(ii) shows the solution to the max-reach problem and Figure 12(iii) shows

the solution to the min-seed problem for τ = 0.75. Figure 13 shows a comparison of

seeding in sampled networks based on the graphon analysis versus greedy or random.
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0.0 0.2 0.4 0.6 0.8 1.0
ρ

0.2

0.4

0.6

0.8

1.0
�

�

ρ
*

(ii) Max-reach

0.0 0.2 0.4 0.6 0.8 1.0
�

0.2

0.4

0.6

0.8

1.0
ρ

��
*

(iii) Min-seed

Figure 12: Location Model (Parise and Ozdaglar, 2022). Left: density plot for the GUA graphon. Middle:
solution to the interval max-reach problem (7.1). Right: solution to the interval min-seed problem (7.2).
Thresholds are set at τ(u) = τ = 0.75.

Figure 13: Location Model (Parise and Ozdaglar, 2022). Fraction of asymptotically infected agents
as a function of population size when the seed set is designed according to the graphon-based seeding
policy (left, magenta), a greedy policy (middle, blue) or random seeding (right, cyan) for the budget
1
2

(
τ +

√
τ2 + 4(1− τ)2

)
− (1 − τ). For each population size n we constructed 20 sampled networks, thus

obtaining a distribution of the fraction of asymptotically infected agents. We here report the median of such
distribution (solid line) and the quantiles (from 0.2 to 0.8) as a shaded region.

8 Conclusion

In this paper, we introduced a model of threshold contagion in graphons. Our

key result showed that contagion in a graphon closely approximates contagion in sam-

pled graphs. This suggests a new procedure for intervention design where the seed

set is evaluated for the graphon process and then applied to sampled networks. We

showed that calculating the optimal seed set for the graphon model is often analytically

tractable, overcoming the computational intractability of intervention design for large

sampled networks.

We can see several directions for further work. First, one could analyze other con-

tagion processes in graphons, such as the independent cascade model due to Kempe

et al. (2003) or the classic SIR model used extensively for disease spread (e.g., Ace-

moglu et al. (2021)). Second, it is worth better understanding under what conditions
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arbitrarily small seed sets—sensitive infection points—can result in a positive fraction

of the labels being infected. Third, since our results imply that contagion in graphons

well approximates every step of the contagion process, the graphon model could be

used to study the speed of contagion (e.g., Koh and Morris (2022)). Finally, we hope

that our model could serve as a useful starting point for richer economic models, such

as network formation in the presence of shocks (e.g., Erol (2019)).
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APPENDIX

A Convergence results

In this section we consider a generalization of the convergence results presented in
Theorems 1a and 1b that hold under the following less restrictive assumption.

Assumption 3. We assume the following:

• The set C0 is measurable.

• The threshold function τ(u) is piece-wise continuous, u 7→ W (u, v) is piece-wise
continuous for almost all v (i.e., there is a set Dv with µ(Dv) = 0 such that u 7→
W (u, v) is piece-wise continuous in u for any v ∈ [0, 1]\Dv) and the set of discon-
tinuities, Du := {u | ∃v ∈ [0, 1]\Dv s.t. W (u, v) or τ(u) are not continuous in u},
has measure zero.

• The set [0, 1]\Du is open.

Clearly, Assumption 3 implies Assumption 1. To compactly state our following

results for any set of labels X ⊂ [0, 1] we define V (n) (X) := {i ∈ [n] | u(n)
i ∈ X} to be

the set of (sampled) agents whose label is in the set X ⊂ [0, 1].

A.1 Infected labels and infected agents

Consider the set C∞ of labels that are infected in graphon contagion. Our first
result is that “almost all” sampled agents whose labels are in C∞ will be infected in
any sampled network with large enough population.

Theorem 1a′. Suppose that Assumption 3 holds. For all ε, κ > 0, there exists N ε,κ

and a measurable set Cε∞ with Cε∞ ⊂ C∞, µ (Cε∞) ≥ µ (C∞) − ε such that for all
n > N ε,κ, with probability at least 1− κ

V (n) (Cε∞) ⊂ C(n)
∞ ,

that is, agents whose labels are in Cε∞ will be infected in the sampled network.

To prove Theorem 1a′, we show that the graphon model is a good approximation
of both the infected set and the exposed set of agents at every step t of the conta-
gion process. Theorem 1a′ follows immediately as a consequence of the following two
propositions.

Proposition 1. (Infected set at time t) Suppose that Assumption 3 holds. For all
t ≥ 0 and εt, κt > 0, there exists N εt,κt

t and a measurable set Cεtt , with Cεtt ⊂ Ct,
µ (Cεtt ) ≥ µ (Ct)− εt such that for all n > N εt,κt

t , with probability at least 1− κt

V (n) (Cεtt ) ⊂ C(n)
t .

Proposition 2. (Exposed set at time t) Suppose that Assumption 3 holds. For all
t ≥ 1 and εt, κt > 0, there exists N̂ εt,κt

t and a measurable set Ĉεtt , with Ĉεtt ⊂ Ĉt,

µ
(
Ĉεtt

)
≥ µ

(
Ĉt

)
− εt such that for all n > N̂ εt,κt

t , with probability at least 1− κt

V (n)
(
Ĉεtt

)
⊂ Ĉ(n)

t .
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In words, Propositions 1 and 2 say that if a label is infected (resp. exposed) at
time t in the graphon process then, for large n, at time t the agent with that label
is infected (resp. exposed) with high probability in the sampled process. We prove
Propositions 1 and 2 jointly by induction in Appendix C). To derive some intuition,
note that Proposition 1 holds at time t = 0 by construction. The main step in our
proof is to show that if Proposition 1 holds for time t − 1 then Proposition 2 holds
for time t. Note that the statements in Propositions 1 and 2 hold for almost all labels
except a set of measure ε, which can be made as small as necessary by increasing n. To
understand why we need to exclude a set of measure ε consider Proposition 2. In order

to determine whether an agent with label u
(n)
i who is exposed at time t in the graphon

process, i.e., u
(n)
i ∈ Ĉt, is also exposed in the sampled process we need to determine

whether
d

(n)
i (C

(n)
t−1)− τ (n)

i d
(n)
i > 0.

For a given label u
(n)
i , we know that

d
(n)
i (C

(n)
t−1) =

∑
j∈C(n)

t−1

A
(n)
ij and d

(n)
i :=

∑
j

A
(n)
ij

are the sum of random variables A
(n)
ij = Ber(W (u

(n)
i , u

(n)
j )) induced by u

(n)
j . Our main

argument is to use concentration inequalities to show that, for large n, the two sums
accumulate so that

d
(n)
i (C

(n)
t−1)

n
≈ d(u

(n)
i , Ct−1) and

d
(n)
i

n
≈ d(u

(n)
i ),

where the approximation improves for a large n. Hence, we have that

T (n) := d
(n)
i (C

(n)
t−1)− τ (n)

i d
(n)
i ≈ n(d(u

(n)
i , Ct−1)− τ(u

(n)
i )d(u

(n)
i )) =: nT.

Since u
(n)
i ∈ Ĉt, T is strictly positive, but could be arbitrarily close to zero. By

removing a set of measure ε from Ĉt we make sure that T is bounded away from zero
by a positive quantity so that the perturbed term T (n)—which accumulates around
T—is positive for n large enough.

A.2 Labels and agents who are not infected

Next, we consider labels that belong to the set D̄∞. Under the more general
assumption 3, Theorem 1b can be reformulated as follows.

Theorem 1b′. Suppose that Assumption 3 holds. For all ε, κ > 0, there exists N ε,κ

and a measurable set Dε
∞ with Dε

∞ ⊂ D̄∞, µ (Dε
∞) ≥ µ

(
D̄∞

)
− ε such that for all

n > N ε,κ, with probability at least 1− κ

V (n) (Dε
∞) ⊂ D(n)

∞ ,

that is, agents whose labels are in Dε
∞ will not be infected in the sampled network.

We conclude this section by noting that if D∞ \ D̄∞ does not have zero measure,
then we need to be careful about indices that fall in D∞ \D̄∞. Indeed, on the graphon,
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C∞ gets infected and D∞ does not. When one samples from the graphon, the points
on D∞ \ D̄∞ can behave erratically. We next derive a sufficient condition for D∞ \ D̄∞
to have zero measure.

Remark 1. Suppose that there exists ` > 0 such that for any u ∈ D∞, we have that

d(u, [D∞]c)− τ(u)d(u) < −`, (A.1)

then D∞ = D̄∞.

We also note that once C∞ has been calculated, it is straightforward to verify
whether µ(D∞ \ D̄∞) = 0 or the stronger condition (A.1) in Remark 1 holds, as the
following example shows.

Example 7. Let us consider again the Erdős-Rényi model with connection probability
p and constant threshold function τ(u) = τ discussed in Section 2. Fix any seed set
C0 of measure ρ. We next show that the assumption µ(D∞ \ D̄∞) = 0 is generic in
the sense that it holds for almost all thresholds τ . Recall that we have two possible
contagion outcomes:

1. if ρ− τ > 0, then C∞ = [0, 1] (all labels are infected);

2. if ρ− τ ≤ 0, then C∞ = C0 (no new label is infected).

Condition µ(D∞ \ D̄∞) = 0 trivially holds in the first case since D∞ = D̄∞ = ∅. We
focus on the second case and show that µ(D∞ \ D̄∞) = 0 holds whenever ρ − τ < 0.
In the second case, we have that [D∞]c = C∞ = C0, hence

d(u, [D∞]c)− τd(u) = pρ− τp = p(ρ− τ) < 0

for all u ∈ D∞ and condition (4.2) is met with D̄∞ = D∞ generically for all τ 6= ρ.
Therefore, we cannot apply Theorems 1a′ and 1b′ for this example only in the non-

generic case when τ = ρ. In that case, µ(D∞ \ D̄∞) = µ(D∞). To see this, note that
for τ = ρ and for any D̄∞ ⊂ D∞, it must be µ([D̄∞]c) ≥ µ([D∞]c) = µ(C∞) = ρ.
Hence the left hand side of condition (4.2) is greater or equal to p(ρ − τ) = 0 and
condition (4.2) cannot hold. Hence, when τ = ρ, we have that D̄∞ = ∅.

B Contagion in graphons with infinite types

B.1 Interval contagion

Under Assumption 2, if at time step t the infected set is the interval (at, bt), then
at t+ 1 the infected set becomes the interval (at+1, bt+1) where

at+1 = min {at, α(at, bt)} ≤ at, (B.1)

bt+1 = max {bt, β(at, bt)} ≥ bt. (B.2)

The existence of cutoff functions thus guarantees that contagion can be succinctly sum-
marized (using (B.1) and (B.2)) by a growing interval described by the two contagion
sequences (at)t≥0 and (bt)t≥0 that start from a0 and b0 and that correspond to the left
and right endpoint of the infected interval at time t. Note that by construction, (at)t≥0

is a (weakly) decreasing and bounded sequence and (bt)t≥0 is a (weakly) increasing and
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bounded sequence.11 Let the limit of these sequences be a∗ and b∗. The outcome of
contagion is then given by (a∗, b∗). In Figure 9, after interval (a1, b1) is infected the
values of the cutoff iterators change to α(a1, b1) and β(a1, b1) and in the next step
all labels between a2 = α(a1, b1) and b2 = β(a1, b1) are infected. The limit of the
contagion sequence in the example is (a∗, b∗) = [0, b∗).

Our goal is to characterize the interval of infected labels (a∗, b∗) in terms of the
interval of initial seeds (a0, b0). To this end, we focus on a particularly tractable set of
cutoff iterators that satisfy the following assumption.
Assumption 4. (Single-crossing property) The cutoff iterators satisfy the single-crossing
property if:

• for all b ∈ [0, 1], there exists a crossing function α†(b) ∈ [0, 1] such that for all
a ∈ (0, b) [if a < α†(b): α(a, b) < a] and [if a > α†(b): α(a, b) > a],

• for all a ∈ [0, 1], there exists a crossing function β†(a) ∈ [0, 1] such that for all
b ∈ (a, 1) [if b < β†(a): β(a, b) < b] and [if b > β†(a): β(a, b) > b].

Assumption 4 is also quite natural and simply says that for any fixed right extreme
b of the seed set, the contagion behavior depends in a monotone way on the left extreme
a. Specifically, there is a threshold α†(b) such that if the left extreme is smaller than
α†(b) the infection propagates (α(a, b) < a), while otherwise it stops (α(a, b) > a).
Similar arguments hold in terms of b for fixed a. We show in Lemma 8 in Appendix B
that α† and β† are both increasing. Therein, we also prove that both the examples of
graphons discussed in Section 7.2 satisfy Assumptions 2 and 4.

Figure 14 illustrates cutoff iterators that satisfy the single-crossing property and
shows that, under Assumptions 2 and 4, when one extreme is fixed contagion evolves
in a simple way. Focusing on the case when b is fixed, it is possible to show that
either contagion stops immediately or it spreads until a∗ = 0. Similarly, when a is
fixed contagion either stops immediately or it spreads until b∗ = 1. During the actual
contagion process both ends of the interval change simultaneously, still it is possible to
show that only four outcomes are possible, as proven next.

Proposition 3. Suppose that given a graphon W (u, v) and threshold function τ(u),
the cutoff iterators α and β exist and satisfy the single-crossing property. Then, given
an initial seed (a0, b0), the outcome of contagion (a∗, b∗) is given by one of the following
modes:

1. No contagion: If a0 ≥ α†(b0) and b0 ≤ β†(a0), then a∗ = a0 and b∗ = b0.

2. Right-only contagion: If a0 ≥ α†(1) and b0 > β†(a0), then a∗ = a0 and b∗ = 1.

3. Left-only contagion: If a0 < α†(b0) and b0 ≤ β†(0), then a∗ = 0 and b∗ = b0.

4. Complete contagion: If (i) [right-first: a0 < α†(1) and b0 > β†(a0)] or (ii) [left-
first: a0 < α†(b0) and b0 > β†(0)], then a∗ = 0 and b∗ = 1.

To develop some intuition for Proposition 3 let us consider Case 1. Since a0 ≥ α†(b0)
no label smaller than a0 is exposed at the first iteration (cf. Figure 14(i)) and since
b0 ≤ β†(a0) no label greater than b0 is exposed at the first iteration. Therefore, no new
label is exposed and contagion stops immediately.

11From here on we omit the word weakly from (weakly) increasing/decreasing and we instead specify
strictly increasing/decreasing if we want to exclude the equality sign.

33



Figure 14: Phase diagrams of single-crossing cutoff iterators.
Consider first the case when one extreme of the interval is fixed. Figure 14(i) illustrates α(·, b̄), for some
fixed right end b̄. Starting from a0 one can define the auxiliary sequence {ab̄t}∞t=0 where ab̄0 = a0 and
ab̄t+1 = min{ab̄t , α(ab̄t , b̄)}. Note that if we start from a0 > α†(b̄) the single-crossing property requires that
α(a0, b̄) > a0. Therefore, the contagion process stops, and a∗ = a0. In other words, a0 is a fixed point of
the auxiliary sequence. On the other hand, suppose that we start from a′0 < α†(b̄). Using the single-crossing
property that α(a, b̄) < a for all a and that α(a, b̄) is right-continuous, the auxiliary sequence is strictly
decreasing and converges to a∗ = 0. Hence all labels in the interval (0, α†(b̄)) are infected. Figure 14(ii)
illustrates the same process when the left end of the interval is fixed at ā and β(ā, ·) iterates.
During the actual contagion process, both ends of the contagion interval are changing simultaneously. Figure
14(iii) illustrates what happens to α(·, bt) when bt increases to bt+1. Using a similar argument to the one
above, if one were to fix bt then the interval (0, α†(bt)) would be infected. When bt increases to bt+1 however
α†(a, bt) falls for all a, so the cutoff α†(bt+1) is higher than α†(bt). Therefore, any label between α†(bt) and
α†(bt+1) will end up being infected. The process iterates until all labels in (0, α†(b∗)) are infected.
Figure 14(iv) illustrates how β†(a) changes as a decreases from at to a∗.
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Suppose instead that a0 < α†(b0), in this case all the labels in (α(a0, b0), a0) are
exposed. Starting from a0, define the auxiliary sequence {ab0t }∞t=0 where ab00 = a0 and
ab0t+1 = min{ab0t , α(ab0t , b0)}. In this auxiliary sequence, we are allowing only labels
that are at the left of a0 to get infected. Clearly, if a label is infected in the auxiliary
sequence, it is infected also in the original contagion process. Since the single-crossing
property gives us that α(a, b0) < a for all a < α†(b0) and we have that α(a, b0) is
right-continuous, the auxiliary sequence is strictly decreasing and converges to 0. This
implies that a∗ = 0. We now need to distinguish two cases. If b0 ≤ β†(0) at no
point in the process labels greater than b0 are exposed and the final contagion outcome
is (0, b0); this corresponds to Case 3 in Proposition 3. If instead b0 > β†(0), then
by the single-crossing property and left continuity of β(0, b), the auxiliary sequence
{b0t }∞t=0 where b00 = b0 and b0t+1 = max{b0t , β(0, b0t )} converges to 1 (cf. Figure 14(iii)).
Intuitively, the fact that the process where we first allow contagion on the left and then
on the right leads to complete contagion implies that complete contagion occurs also in
the original process when both extremes change simultaneously (because the order of
contagion does not matter).12 Hence, we must have that b∗ = 1 and the entire interval
[0, 1] is infected at the end of the contagion process; this corresponds to Case 4(ii) in
Proposition 3. Cases 2 and 4(i) work analogously by first applying the cutoff operator
to labels on the right and then on the left of (a0, b0).

In summary, for cutoff iterators that satisfy the single-crossing property, if contagion
starts either to the left or to the right of initial seed set, it will continue until it infects
all the labels on that side. To check for complete contagion, we can simply check
whether contagion starts on one side and whether, after that, it starts on the other
side.

B.2 Optimal seeding

In this section we show how Proposition 3 enables the solution of the interval max-
reach and min-seed problems when cutoff iterators exist and satisfy the single-crossing
property.

Max-reach

Denote by Aρ the set of values of a0 that lead to complete contagion, corresponding
to Case 4 in Proposition 3. Then

Aρ := {a0 | a0 < α†(1), a0 + ρ > β†(a0)} ∪ {a0 | a0 < α†(a0 + ρ), a0 + ρ > β†(0)}.

If complete contagion is possible with a seed budget of ρ, then Aρ is non-empty and any
seed that corresponds to any element of Aρ is optimal. Otherwise, we must consider
whether partial contagion is possible. Proposition 3 tells us that partial contagion can
be either right-only or left-only. With right-only contagion (Case 2), the outcome of
contagion is (a0, 1]. So the problem boils down to finding the smallest a0 such that b0
can be taken to be larger than β†(0) with a budget of ρ. This way, contagion iterates
until bt converges 1. The case of left-only contagion (Case 3) works analogously. This
discussion proves the next result.

12This argument is not entirely rigorous because the first sequence {ab0t }∞t=0 may take infinite time to
converge, we provide a rigorous proof of these statements in Appendix C.
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Proposition 4. Under Assumptions 2 and 4, if Aρ 6= ∅ then f̃∗ρ = 1 and any set
[a0, a0 + ρ] with a0 ∈ Aρ is an optimal seed set. If instead Aρ = ∅ and we define13

f̃ [2]
ρ := sup

a0∈[0,1]
1− a0

s.t. a0 ≥ α†(1)

ρ+ a0 > β†(a0)

f̃ [3]
ρ := sup

a0∈[0,1]
a0 + ρ

s.t. a0 < α†(a0 + ρ)

ρ+ a0 ≤ β†(0)

then f̃∗ρ = max{ρ, f̃ [2]
ρ , f̃

[3]
ρ }.

Min-seed

Theorem 4. Under Assumptions 2 and 4,

r̃∗m = min

{
inf

0≤x<max{1−m,α†(1)}

(
β†(x)− x

)+
, inf

1≥x>min{m,β†(0)}

(
x− α†(x)

)+
}
.

(B.3)
Consider any ã∗0 and b̃∗0 respectively from the arguments of the first and second infimum
terms in Eq. (B.3).14 If r̃∗m is equal to the first inf, then [ã∗0, ã

∗
0 + r̃∗m] is limit-optimal.

If r̃∗m is equal to the second inf then [b̃∗0 − r̃∗m, b̃∗0] is limit-optimal.

Recall from Proposition 3 that right-only or right-first complete contagion happens
if and only if b0 > β(a0). Then the smallest seed size that achieves right-only or right-
first complete contagion requires taking b0 = β(a0)+ε (or a0+ε if β(a0) < a0). Then for
a given a0, the smallest seed size to achieve right-only or right-first complete contagion
is
(
β†(a0)− a0

)+
+ ε. Given that right-only or right-first complete contagion happens

with such a seed, the outcome is (0, 1) if a0 < α†(1) and it is (a0, 1) otherwise. Then the
solution to the interval min-seed problem with the constraint that right-only or right-
first complete contagion happens is given by the first inf term in the expression for r̃∗m.
The same argument applies for the second inf term for the case in which left-only or
left-first contagion happens. Combining the two terms gives us the complete solution
to the min-seed problem. Using this solution, we can also find the limit-optimal seed
set for the interval min-seed problem.

13We define the sup of an empty-set to be 0. Note that the optimization problems in Proposition 4 are
defined as supremum and not maximum hence an optimal seed set might not exists. However, by definition

of supremum for any ε > 0 there must exists a feasible a
[2]
0,ε such that 1− a[2]

0,ε > f̃
[2]
ρ − ε and a feasible a

[3]
0,ε

such that a
[3]
0,ε+ρ > f̃

[3]
ρ − ε. If f̃∗ρ = f̃

[2]
ρ one can then define an ε-optimal seed set as [a

[2]
0,ε, a

[2]
0,ε+ρ]. Instead,

if f̃∗ρ = f̃
[3]
ρ an ε-optimal seed set is [a

[3]
0,ε, a

[3]
0,ε + ρ].

14For A ⊂ [0, 1], x∗ ∈ arg infx∈A g(x) if there exists a sequence (xt)t in A such that limt xt = x∗ and
limt g(xt) = infx∈A g(x). Note that we are not requiring x∗ to belong to A hence arg inf is non-empty.
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MATERIAL FOR ONLINE PUBLICATION

C Proofs

C.1 Algorithmic definitions of contagion processes

Denote

r(u,Ct−1) :=
d(u,Ct−1)

d(u)

be the fraction of neighbors of label u that are infected in step t− 1.
We can write the fraction of infected neighbors in the sampled network at time t as

r(n)(i, C
(n)
t−1) :=

d(n)
(
i, C

(n)
t−1

)
d(n) (i)

:=

∑
j 6=iA

(n)
ij 1C

(n)
t−1

(j)∑n
j=1A

(n)
ij

.

Algorithm 1: Contagion in a graphon

initialize C0 ⊂ [0, 1]
for t = 1, . . . ,∞ do

for u ∈ [0, 1] do
if u ∈ Ct−1 or r(u,Ct−1) > τ(u) then

u ∈ Ct
end

end

end

Algorithm 2: Contagion in a sampled network

initialize C
(n)
0 ⊂ [n]

for t = 1, . . . , n do
for i = 1, . . . , n do

if i ∈ C(n)
t−1 or r(n)(i, C

(n)
t−1) > τ

(n)
i then

i ∈ C(n)
t

end

end

end

C.2 Auxiliary lemmas for Proposition 1 and Proposition 2

Lemma 1. Let φ : [0, 1] → [−1, 1] be a measurable function. For any ` ∈ [−1, 1],
define the strict upper contour set of φ at ` as φ−1((`, 1]) = {u ∈ [0, 1] | φ (u) > `}.
Then µ

(
φ−1((`, 1])

)
is right-continuous in `.

Lemma 1 can be proven following the same arguments as for the right-continuity
of CDFs, hence its proof is omitted.

Lemma 2. Consider any measurable set C. If Assumption 3 holds, then φ(u) :=∫
CW (u, v)dv − τ(u)

∫ 1
0 W (u, v)dv is piece-wise continuous (i.e. can be discontinuous

only in Du).
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Proof. We show that
∫
CW (u, v)dv is piece-wise continuous in u. Specifically, we prove

that it is continuous for any u ∈ [0, 1]\Du. The rest follows similarly. We need to
prove that for any u ∈ [0, 1]\Du, un → u implies

∫
CW (un, v)dv →

∫
CW (u, v)dv.

For all v ∈ [0, 1]\Dv and u ∈ [0, 1]\Du, W (u, v) is continuous in u, hence fn(v) :=
W (un, v)1C(v) → W (u, v)1C(v) =: f(v). Thus fn → f pointwise (except for a set
Dv of zero measure). Also note that |fn(v)| ≤ 1 for all v ∈ [0, 1], for all n. Then by
Lebesgue’s Dominated Convergence Theorem

lim
n→∞

∫
C
W (un, v)dv = lim

n→∞

∫ 1

0
fn(v)dv =

∫ 1

0
f(v)dv =

∫
C
W (u, v)dv

for all u ∈ [0, 1]\Du.

Lemma 3. Suppose that φ : [0, 1] → [−1, 1] is piece-wise continuous (i.e. it is dis-
continuous only in a set Du of zero measure). Then φ−1 ((`, 1]) is measurable for any
` ≥ 0.

Proof. Since φ is piece-wise continuous it is measurable and thus φ−1((`, 1]) (i.e. the
pre-image of the measurable set (`, 1] is measurable).

Lemma 4. If Assumption 3 holds, then Ct is measurable for all t ≥ 0.

Proof. We proceed by induction, first note that C0 is measurable by Assumption 3.
We then show that if Ct−1 is measurable then Ct is measurable. To this end, define
φt−1(u) :=

∫
Ct−1

W (u, v)dv−τ(u)
∫ 1

0 W (u, v)dv and note that, since Ct−1 is measurable,

φt−1(u) is piece-wise continuous by Lemma 2. As a consequence Ĉt = φ−1
t−1 ((0, 1]) is

measurable by Lemma 3 . Finally Ct = Ct−1 ∪ Ĉt is the union of measurable sets and
is thus measurable.

C.3 Proofs of Proposition 1 and Proposition 2

We prove Proposition 1 and Proposition 2 jointly by induction.

• Step 1: Proposition 1 holds for t = 0.

To prove this statement for any ε0, set N ε0
0 = 0, Cε00 = C0. By definition,

V (n) (Cε00 ) = V (n) (C0) = C
(n)
0 . Hence Proposition 1 holds for t = 0 and any

κ0 ≥ 0.

• Step 2: We next prove that if Proposition 1 holds for t′ = t−1, then Proposition 2
holds for time t.

– Step 2.1: We start by showing that for any εt it is possible to construct a
measurable set Ĉεtt such that:

P1) Ĉεtt is contained in Ĉt and differs by it at most of measure εt;

P2) any u ∈ Ĉεtt has susceptibility bounded away from zero, meaning that
there exists `t > 0 such that d (u,Ct−1)− τ (u) d (u) > `t.

To this end,
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∗ Define φ(u) := d (u,Ct−1) − τ (u) d (u) and M(`) := φ−1((`, 1]). By
Lemmas 2 and 4 φ is piece-wise continuous and thus measurable, hence
µ (M(`)) is right-continuous by Lemma 1 and lim`↓0µ (M (`)) = µ (M (0)).

Note that M (0) = Ĉt by definition. By right-continuity, given εt, there

exists `t > 0 such that 0 ≤ µ
(
Ĉt

)
− µ (M (`t)) ≤ εt. Set Ĉεtt = M (`t)

which is measurable by Lemma 3.

∗ Then
Ĉεtt = M (`t) ⊂M (0) = Ĉt,

µ
(
Ĉεtt

)
= µ (M (`t)) ≥ µ

(
Ĉt

)
− εt,

proving P1).

∗ Finally, take any u ∈ Ĉεtt . Since Ĉεtt = M (`t), by construction, d (u,Ct−1)−
τ (u) d (u) > `t, thus proving P2).

– Step 2.2: We next show that for n large enough with high probability all
agents in the newly constructed set Ĉεtt are exposed in the sample. More
precisely, we aim at showing that with probability at least 1− κt

u
(n)
i ∈ Ĉεtt ⇒ i ∈ Ĉ(n)

t .

We do this in several steps.

∗ By definition i ∈ Ĉ(n)
t if and only if

T :=
∑

j∈C(n)
t−1

A
(n)
ij − τ

(n)
i

n∑
j=1

A
(n)
ij > 0.

Fix κt−1 = κt
2 and εt−1 = `t

2 (where `t is as defined in the construction

of the set Ĉεtt in step 2.1). By induction, for any n > N
εt−1,κt−1

t−1 with
probability at least 1− κt−1

T =
∑

j∈C(n)
t−1

A
(n)
ij − τ

(n)
i

∑
j A

(n)
ij

induction step
≥

∑
j∈V (n)(C

εt−1
t−1 )

A
(n)
ij︸ ︷︷ ︸

T1(u
(n)
i )

−τ (n)
i

∑
j A

(n)
ij︸ ︷︷ ︸

T2(u
(n)
i )

,

(C.1)

where we used that V (n)(C
εt−1

t−1 ) ⊂ C
(n)
t−1. We aim at showing that for n

large
T1(u

(n)
i )
n ≈ d

(
u

(n)
i , C

εt−1

t−1

)
and

T2(u
(n)
i )
n ≈ d

(
u

(n)
i

)
. To this end, let

us define the functions

E1(u) :=
∑
j

1(u
(n)
j ∈ Cεt−1

t−1 )W (u, u
(n)
j ) and E2(u) :=

∑
j

W (u, u
(n)
j ),

so that for example E2(u
(n)
i ) :=

∑
jW (u

(n)
i , u

(n)
j ) =

∑
j E[A

(n)
ij ] where

the expectation is over the Bernoulli realization of the links. We aim at
showing that:

i)
T2(u

(n)
i )
n accumulates around its mean

E2(u
(n)
i )
n
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ii)
E2(u

(n)
i )
n converges to d

(
u

(n)
i

)
,

(and similarly for T1).

∗ Proof of i): Consider any κ, ε > 0. We next aim at proving that there

exists Ñ1 large enough such that for all n > Ñ1 and for any {u(n)
j }nj=1,

with probability at least 1− κ/2

1

n
|T1(u

(n)
i )− E1(u

(n)
i )| = | 1

n

∑
j:u

(n)
j ∈C

A
(n)
ij −

1

n

∑
j:u

(n)
j ∈C

E[A
(n)
ij ]| ≤ ε/2, for all i,

(C.2)

where the expectation is over the Bernoulli realization of the links and
C = C

εt−1

t−1 (for the T2 term set C = [0, 1] and repeat the same argument).
To this end let us define the new random variables

Ã
(n)
ij =

{
A

(n)
ij if u

(n)
j ∈ C

0 otherwise

and note that

| 1
n

∑
j:u

(n)
j ∈C

A
(n)
ij −

1

n

∑
j:u

(n)
j ∈C

E[A
(n)
ij ]| = | 1

n

n∑
j=1

Ã
(n)
ij −

1

n

n∑
j=1

E[Ã
(n)
ij ]|.

Moreover note that for each fixed i the variables {Ã(n)
ij }nj=1 are indepen-

dent and bounded between 0 and 1. It follows by Hoeffding’s inequality
that

P[| 1
n

n∑
j=1

Ã
(n)
ij −

1

n

n∑
j=1

E[Ã
(n)
ij ]| > ε/2] < 2 exp(−2(ε/2)2n).

By the union bound,

P[| 1
n

n∑
j=1

Ã
(n)
ij −

1

n

n∑
j=1

E[Ã
(n)
ij ]| ≤ ε/2,∀i] > 1− 2n exp(−2(ε/2)2n).

The conclusion follows by setting Ñ1 such that 2Ñ1 exp(−2(ε/2)2Ñ1) <
κ/2.

∗ Proof of ii): The functions

E1(u) :=
∑
j

1(u
(n)
j ∈ Cεt−1

t−1 )W (u, u
(n)
j ) and E2(u) :=

∑
j

W (u, u
(n)
j )

are sum of iid random variables since the u
(n)
j are iid random variables

40



uniformly distributed in [0, 1]. Note that

E
[
W (u, u

(n)
j )
]

=

∫ 1

0
W (u,w)dw = d(u),

E
[
1(u

(n)
j ∈ Cεt−1

t−1 )W (u, u
(n)
j )
]

=

∫ 1

0
1(w ∈ Cεt−1

t−1 )W (u,w)dw = d(u,C
εt−1

t−1 ).

By the uniform law of large number15 (uniform in u) for any ε > 0 and
for any κ > 0 there exists Ñ2 such that for any n ≥ Ñ2 with probability
1− κ/2

supu∈[0,1]

∣∣∣∣ 1nE2(u)− d(u)

∣∣∣∣ < ε/2 (C.3a)

and similarly

supu∈[0,1]

∣∣∣∣ 1nE1(u)− d(u,C
εt−1

t−1 )

∣∣∣∣ < ε/2. (C.3b)

Hence in particular

| 1
n
E1(u

(n)
i )− d(u

(n)
i , C

εt−1

t−1 )| ≤ ε/2, for all i,

| 1
n
E2(u

(n)
i )− d(u

(n)
i )| ≤ ε/2, for all i.

(C.4)

∗ Combining (C.2) and (C.4), we obtain that for all n ≥ Ñ := max{Ñ1, Ñ2}
with probability 1− κ

T1(u
(n)
i ) > nd

(
u

(n)
i , C

εt−1

t−1

)
− nε

T2(u
(n)
i ) < nd

(
u

(n)
i

)
+ nε

(C.5)

for all i.

∗ Set κ = κt
2 and ε = `t

4 . Plugging-in the bounds derived in (C.5) in (C.1),
using the fact that d

(
u,C

εt−1

t−1

)
≥ d (u,Ct−1)−εt−1 and the union bound,

we get that for all n > N̂ εt,κt
t = max

{
N
εt−1,κt−1

t−1 , Ñ
}

with probability

at least 1− κt−1 − κ = 1− κt
2 −

κt
2 = 1− κt

T ≥ n
[
d
(
u

(n)
i , C

εt−1

t−1

)
− τ (n)

i d
(
u

(n)
i

)
− ε− τ (n)

i ε
]

= n
[
d
(
u

(n)
i , Ct−1

)
− εt−1 − τ

(
u

(n)
i

)
d
(
u

(n)
i

)
− 2ε

]
> n [`t − εt−1 − 2ε] = n`t

[
1− 1

2
− 2

1

4

]
= 0

as desired.

15Define F (x|θ) = W (θ, x) and F (x|θ) = 1(x ∈ Cεt−1

t−1 )W (θ, x) for E2 and E1, respectively. Then F (x | θ)
is piecewise continuous in θ for almost all x and measurable in x for each θ, hence uniform law of large numbers
applies. Additionally, we use the union bound to bound the two quantities in (C.3) simultaneously.
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∗ Overall we have shown that for all n > N̂ εt,κt
t with probability at least

1− κt
u

(n)
i ∈ Ĉεtt ⇒ i ∈ Ĉ(n)

t .

• Step 3.

Finally, we prove that if Proposition 1 holds for t′ = t−1 and Proposition 2 holds
for t′ = t, then Proposition 1 holds for t′ = t.

– Recall that C
(n)
t = C

(n)
t−1 ∪ Ĉ

(n)
t and Ct = Ct−1 ∪ Ĉt (the infected at time t

are the union of the infected at time t− 1 and the exposed at time t) .

– For any εt, κt by Proposition 1 applied to t′ = t − 1, there exists N
εt/2,κt/2
t−1

and C
εt/2
t−1 such that µ(C

εt/2
t−1 ) ≥ µ(Ct−1)−εt/2 and for all n > N

εt/2,κt/2
t−1 with

probability 1− κt/2
V (n)(C

εt/2
t−1 ) ⊂ C(n)

t−1;

– Similarly, for any εt, κt by Proposition 2 applied to t′ = t, there exists

N̂
εt/2,κt/2
t and Ĉ

εt/2
t such that µ(Ĉ

εt/2
t ) ≥ µ(Ĉt) − εt/2 and for all n >

N̂
εt/2,κt/2
t with probability 1− κt/2

V (n)(Ĉ
εt/2
t ) ⊂ Ĉ(n)

t ;

– Let us define N εt,κt
t := max{N εt/2,κt/2

t−1 , N̂
εt/2,κt/2
t } and Cεtt = C

εt/2
t−1 ∪ Ĉ

εt/2
t .

Note that since both C
εt/2
t−1 and Ĉ

εt/2
t are measurable so is their union.

– Moreover, for any n > N εt,κt
t , µ(Cεtt ) ≥ µ(Ct)−εt and with probability 1−κt

V (n)(Cεtt ) = V (n)(C
εt/2
t−1 ∪Ĉ

εt/2
t ) = [V (n)(C

εt/2
t−1 )∪V (n)(Ĉ

εt/2
t )] ⊂ [C

(n)
t−1∪Ĉ

(n)
t ] = C

(n)
t .

This concludes the induction and proves Propositions 1 and 2.

C.4 Proof of Theorem 1a′

• Consider the contagion process in the graphon. The sequence µ(Ct) is increasing
and is upper bounded by 1. Hence it is convergent, let µ∗ be its limit. Clearly,
it must be µ∗ = µ(C∞). By definition of limit, for any ε > 0, there exists a time
T > 0 such that µ(CT ) > µ(C∞)− ε/2.

• By Proposition 1, there exists N
ε/2,κ
T and C

ε/2
T such that µ(C

ε/2
T ) ≥ µ(CT )− ε/2

and for all n > N
ε/2,κ
T with probability at least 1− κ,

V (n)(C
ε/2
T ) ⊂ C(n)

T .

• Let N ε := N
ε/2,κ
T and Cε∞ := C

ε/2
T . Then Cε∞ = C

ε/2
T ⊂ CT ⊂ C∞ and µ(Cε∞) =

µ(C
ε/2
T ) ≥ µ(CT )− ε/2 ≥ µ(C∞)− ε. Moreover

V (n)(Cε∞) = V (n)(C
ε/2
T ) ⊂ C(n)

T ⊂ C(n)
∗ .
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C.5 Proof of Theorem 1b′

• First of all note that since µ∞ = supD∈D µ(D) for any ε > 0 there exists a set
¯̄D∞ ∈ D such that µ( ¯̄D∞) ≥ µ∞ − ε/2.

• Next note that since ¯̄D∞ ∈ D, φ(u) := d(u, ¯̄Dc
∞)− τ(u)d(u) < 0 for all u ∈ ¯̄D∞.

Let φ̃(u) := −φ(u). Then ¯̄D∞ := φ̃−1((0, 1]). Similar arguments as in the proof
of Theorem 1 show that for any ε > 0 it is possible to construct a measurable set
D̄ε
∞ ⊂ ¯̄D∞ such that µ(D̄ε

∞) ≥ µ( ¯̄D∞) − ε/2 ≥ µ∞ − ε and there exists ` > 0
such that d(u, ¯̄Dc

∞)− τ(u)d(u) < −` for all u ∈ D̄ε
∞.

• We next show that with probability 1 − κ for n large enough, V (n)
(
D̄ε
∞
)

is a

cohesive set. To this end, we need to prove that if u
(n)
i ∈ D̄ε

∞ then

Ti :=
∑

j|u(n)j ∈[D̄ε∞]c

A
(n)
ij

︸ ︷︷ ︸
T3(u

(n)
i )

−τ (n)
i

∑
j

A
(n)
ij︸ ︷︷ ︸

T2(u
(n)
i )

≤ 0.

Note that T2(u
(n)
i ) is as defined in (C.1) and T3(u

(n)
i ) has the same structure as

T1(u
(n)
i ). In a similar way we can conclude that for any κ > 0 and δ > 0 there

exists Nδ,κ such that if n > Nδ,κ with probability at least 1− κ for all i

T3(u
(n)
i ) < nd

(
u

(n)
i , [D̄ε

∞]c
)

+ nδ

T2(u
(n)
i ) > nd

(
u

(n)
i

)
− nδ.

(C.6)

Hence

Ti = n

[
1

n
T3(u

(n)
i )− τ (n)

i

1

n
T2(u

(n)
i )

]
< n

[
d(u

(n)
i , [D̄ε

∞]c) + δ − τ (n)
i (d(u

(n)
i )− δ)

]
≤ n [−`+ 2δ]

where we used d(u
(n)
i , [D̄ε

∞]c)) − τ (n)
i d(u

(n)
i ) < −` since u

(n)
i ∈ D̄ε

∞. By setting,
δ < `

2 and n > N ε,κ = Nδ,κ we get Ti < 0 as desired.

• Since V (n)
(
D̄ε
∞
)

is a cohesive set and none of the agents in V (n)
(
D̄ε
∞
)

is initially
infected, these agents cannot be infected during the process, thus terminating the
proof.

C.6 Proof of Theorem 2

To keep the notation simple, from here on, given a graphon W (u, v) and threshold
function τ(u), we denote by χ(C0) the graphon contagion outcome C∞ corresponding
to the initial seed set C0 ⊂ [0, 1] and we recall that f(C0) = µ(χ(C0)).

i) It is clear that f∗0 = 0 and r∗0 = 0 since starting from a zero measure set contagion
does not iterate.
ii) Take any ρ such that ρ < r∗1. In this case, it is not possible to achieve complete
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contagion, and thus f∗ρ < 1. Take any ε < 1 − f∗ρ . Take a sequence (Ct0)t such that
µ(Ct0) ≤ ρ, f(Ct0) ↑ f∗ρ . For each t, f(Ct0) ≤ f∗ρ < 1 − ε. Then there exists a set Zt
with measure ε in the complement of χ(Ct0). Denote Z ′t = Ct0 ∪Zt . Z ′t has measure at
most ρ + ε. Then f(Z ′t) ≤ f∗ρ+ε. Also χ(Z ′t) ⊃ χ(Ct0) ∪ Zt and so f(Z ′t) ≥ f(Ct0) + ε.
Therefore, f∗ρ+ε ≥ f(Ct0) + ε. Taking the limit, we find f∗ρ+ε ≥ f∗ρ + ε. This proves that
f∗ρ − ρ is increasing for ρ ∈ [0, r∗1). It is clear that for ρ > r∗1, f∗ρ ≡ 1.

iii) Regarding m−r∗m we can use the same logic. First, take m > m∗1. By definition
of m∗1 it is not possible to reach a set of measure m with an initial seed of measure less
than r∗1, on the other hand for any ρ > r∗1 it is possible to find an initial set of measure
ρ that induces complete contagion. Hence it must be r∗m = r∗1.

Take m < m∗1, by definition of m∗1, it must be r∗m < r∗1 (there exists ρ̄ < r∗1 s.t.
f∗ρ̄ > m hence r∗m ≤ ρ̄ < r∗1) which implies f∗r∗m < 1. Let ε < 1− f∗r∗m . Take a sequence

Ct0 such that f(Ct0) ≥ m−ε and µ(Ct0) ↓ r∗m−ε. Take the union of Ct0 with an ε measure
set Zt inside the complement of χ(Ct0) (which exists since f∗r∗m−ε

≤ f∗r∗m < 1 − ε).

Call this union Z ′t. We have f(Z ′t) ≥ f(Ct0) + ε ≥ m. Then µ(Z ′t) ≥ r∗m. Also,
µ(Z ′t) = µ(Ct0) + ε ↓ r∗m−ε + ε. Hence, r∗m−ε + ε ≥ r∗m which completes the proof.

C.7 Proof of Theorem 3

As first step we partition the labels into 2k classes {Uj}2kj=1 where Uj = Ij \ C0 for
j = 1, . . . , k is the set of labels in community j that do not belong to the seed set and
Uj = Ij−k ∩C0 for j = k+ 1, . . . , 2k is the set of labels in community j that belong to
the seed set. It is immediate to see that labels within the same class have always the
same state (i.e. either the entire class is infected or nobody in the class is infected).
Take then a label u in class i ≤ k, such label (and therefore its entire class) is infected
at time t if either it was infected at time t− 1 or if it is exposed, meaning

d(u,Ct−1)− τid(u) > 0

⇔
∫ 1

0
WSBM(u, v)1Ct−1(v)dv − τi

∫ 1

0
WSBM(u, v)dv > 0

⇔
2k∑
j=1

∫
Uj
wij[k]1Ct−1(v)dv − τi

2k∑
j=1

∫
Uj
wij[k]dv > 0

⇔
2k∑
j=1

wij[k]bj[k]1Cauxt−1
(j)− τi

2k∑
j=1

wij[k]bj[k] > 0

(C.7)

where 1Cauxt−1
(j) = 1 if class j was infected at time t− 1. The last equation in (C.7) is

exactly the contagion process in the auxiliary network.

C.8 Proof of Proposition 3

We start with some lemmas. Denote ∆α =
{

(a, b) ∈ [0, 1]2 : α(a, b) < a
}

and ∆β ={
(a, b) ∈ [0, 1]2 : β(a, b) > b

}
.

Lemma 5. Monotonicity of iterators: α(a, b) is increasing in a and decreasing in b on
∆α. β(a, b) is decreasing in a and increasing in b on ∆β.
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Continuity of iterators: α(a, b) is right-continuous in a and left-continuous in b on
∆α. β(a, b) is right-continuous in a and left-continuous in b on ∆β.

Proof. Note that d(u, (a, b)) is an integral of a non-negative function from a to b, hence
it is continuous in (a, b), decreasing in a, and increasing in b.

Monotonicity: Take (a, b), (a′, b) ∈ ∆α such that a < a′. Then for any u, we have
d(u, (a, b)) ≥ d(u, (a′, b)) and for any u ∈ (0, a], 1u>α(a,b) ≥ 1u>α(a′,b). This implies that
α(a, b) ≤ α(a′, b). Similar arguments follow for the remaining monotonicity properties.

Continuity: Note that d(u, (a, b)) is continuous in a and b as it is an integral from
a to b. Then for all u, there exists m(u, b) ≥ 0 such that d(u, (a, b)) > τ(u)d(u) iff
a < m(u, b). Therefore, for all u ∈ (0, a], a < m(u, b) iff u > α(a, b). Now, for a
fixed b, take a discontinuity point a0 of α(·, b) such that (a0, b) ∈ ∆α, if any exists.
As α is increasing in a on ∆α, left and right limits of α(a, b) at a = a0 exist. Denote
them α(a−0 , b) and α(a+

0 , b). By the property [a < m(u, b) iff u > α(a, b)], m(u, b) = a0

for all u ∈ [α(a−0 , b), α(a+
0 , b)]. Then a0 6< m(u, b) for u ∈ u ∈ [α(a−0 , b), α(a+

0 , b)],
implying that u 6> α(a0, b) for u ∈ [α(a−0 , b), α(a+

0 , b)]. Therefore, α(a0, b) ≥ α(a+
0 , b).

Thus, α(a0, b) = α(a+
0 , b). This shows that α is right-continuous in a on ∆α. Similar

arguments can be used to show the remaining continuity properties.

Denote ᾱ(a, b) := min {a, α(a, b)} and β̄(a, b) := max {b, β(a, b)}. Further note that
α ≡ ᾱ on ∆α and β ≡ β̄ on ∆β. Recall how we have defined contagion sequences: we
start with the seed (a0, b0) ⊂ [0, 1], and iterate at with ᾱ and bt with β̄. Since these
are (weakly) monotone and bounded sequences, the limits exist and we denote them
by a∗ and b∗. The fact that α and β are right-continuous in a and left-continuous in b
(see Lemma 5) along with the fact that (at)t≥0 is decreasing and (bt)t≥0 is increasing,

guarantees that a∗ = ᾱ(a∗, b∗) and b∗ = β̄(a∗, b∗).
Note that in the contagion sequence both arguments of ᾱ and β̄ change in time. It

is useful to define two auxiliary sequences where only one argument changes in time.
Specifically, construct the auxiliary sequence (ãt)t≥0 given by ã0 = a0, ãt = ᾱ(ãt−1, b

∗).
Similarly, construct (b̃t)t≥0 given by b̃0 = b0, b̃t = β̄(b̃t−1, a

∗).

Lemma 6. limt ãt = a∗ and limt b̃t = b∗.

Proof. By the monotonicity properties of α and β in Lemma 5, we can prove [ãt ≤ at
for all t]. In fact, by induction: ãt−1 ≤ at−1 and bt−1 ≤ b∗ =⇒ ãt = ᾱ(ãt−1, b

∗) ≤
ᾱ(at−1, bt−1) = at. Moreover, [ãt ≥ a∗ for all t] since: ãt = ᾱ(ãt−1, b

∗) ≥ ᾱ(a∗, b∗) = a∗.
Thus a∗ ≤ ãt ≤ at for all t, which implies that limt ãt = a∗. Similarly, the limit of
(b̃t)t≥0 is b∗.

Now we can work with the auxiliary sequences in order to identify necessary con-
ditions for the limits a∗ and b∗.

Lemma 7. Limit properties: If a0 ≥ α†(b∗), then a∗ = a0. If a0 < α†(b∗), then a∗ = 0.
If β†(a∗) ≥ b0, then b∗ = b0. If β†(a∗) < b0, then b∗ = 1.

Proof. If a0 ≥ α†(b∗), by Assumption 4 and right continuity of α(·, b∗) , α(a0, b
∗) ≥ a0.

Then ã1 = α(a0, b
∗) = a0. So, a0 = ã1 = ... = a∗. So the limit is a∗ = a0.

If a0 < α†(b∗), by Assumption 4, α(a0, b
∗) < a0. Then ã1 = α(a0, b

∗) < a0 < α†(b∗)
unless a0 = 0. Similarly, ã2 = α̃(ã1, b

∗) < ã1, unless ã1 = 0. So (ãt)t strictly decreases
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unless it hits 0. Recall that the limit of {ãt} is a∗. Suppose that a∗ > 0. Recall that α
is right-continuous and increasing in a. Thus ᾱ is right-continuous and increasing in a.
Then a∗ = limt→∞ ãt+1 = limt→∞ ᾱ(ãt, b

∗) = ᾱ(a∗, b∗) and thus a∗ = α(a∗, b∗). This
is a contradiction since by 0 < a∗ ≤ a0 < α∗(b∗) and Assumption 4, a∗ > α(a∗, b∗).
Hence it must be a∗ = 0.

Similarly, if β(a∗, b0) ≤ b0, then b∗ = b0. If β(a∗, b0) > b0, then b∗ = 1.

Lemma 8. Monotonicity of crossing functions: α†(b) and β†(a) are increasing.

Proof. If b ≥ b′, then α(a, b) ≤ α(a, b′). Under Assumption 4, this implies that α†(b) ≥
α†(b′). This is, α† is increasing under Assumption 4. Similar arguments apply to β†.
See Figure 14 for a visualization.

Now we are ready to state the proof of Proposition 3 using Lemma 7 and 8:
Case 1
This can be proven as detailed after the statement of Proposition 3 in the main text.
Case 2 and Case 4a
Recall that β† is an increasing function (Lemma 8) and a∗ ≤ a0. Hence β†(a∗) ≤ β†(a0).
The condition b0 > β†(a0) thus implies b0 > β†(a∗) which by Lemma 7 leads to b∗ = 1.
We now distinguish two cases.
Case 2: a0 ≥ a†(1) implies a0 ≥ a†(b∗) and by Lemma 7 a∗ = a0.
Case 4a: a0 < a†(1) implies a0 < a†(b∗) and by Lemma 7 a∗ = 0.
Case 3 and Case 4b
Recall that α† is an increasing function and b0 ≤ b∗; hence α†(b0) ≤ α†(b∗). The
condition a0 < α†(b0) thus implies a0 < α†(b∗) and by Lemma 7 we obtain a∗ = 0. We
now distinguish two cases.
Case 3: b0 ≤ β†(0) implies b0 ≤ β†(a∗) and by Lemma 7 we obtain b∗ = b0.
Case 4b: b0 > β†(0) implies b0 > β†(a∗) and by Lemma 7 we obtain b∗ = 1.

C.9 Proof of Theorem 4

We distinguish two cases:

• Complete contagion (m = 1)
Proposition 3 implies that complete contagion can happen in four cases.

1. a0, b0 ∈ [0, 1] and conditions of case 4a hold. In this case we define

r̃
[4a]
1 :=


inf

a0,b0∈[0,1]2
b0 − a0

s.t. 0 ≤ a0 < α†(1)

1 ≥ b0 > β†(a0)

a0 ≤ b0

 = inf
0≤a0<α†(1)

(
inf

1≥b0>β†(a0),b0≥a0
b0 − a0

)

(C.8)

= inf
0≤a0<α†(1)

(
β†(a0)− a0

)+
= inf

0≤x<α†(1)

(
β†(x)− x

)+
. (C.9)

2. a0, b0 ∈ [0, 1] and conditions of case 4b hold
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In this case we define

r̃
[4b]
1 :=


inf

a0,b0∈[0,1]2
b0 − a0

s.t. 0 ≤ a0 < α†(b0)

1 ≥ b0 > β†(0)

a0 ≤ b0

 = inf
1≥b0>β†(0)

(
inf

0≤a0<α†(b0),a0≤b0
b0 − a0

)

(C.10)

= inf
1≥b0>β†(0)

(
b0 − α†(b0)

)+
= inf

1≥y>β†(0)

(
y − α†(y)

)+
. (C.11)

3. a0 = 0 and conditions of case 2 hold
This can only happen if α†(1) = 0. In this case we define

r̃
[2]
1 := inf

b0>β†(0)
b0 = β†(0) ≥ r̃[4b]

1 . (C.12)

4. b0 = 1 and conditions of case 3 hold
This can only happen if β†(0) = 1. In this case we define

r̃
[3]
1 := inf

a0<α†(1)
1− a0 = 1− α†(1) ≥ r̃[4a]

1 . (C.13)

Hence r̃∗1 = min{r̃[2]
1 , r̃

[3]
1 , r̃

[4a]
1 , r̃

[4b]
1 } = min{r̃[4a]

1 , r̃
[4b]
1 }.

• Partial contagion (m < 1)
Proposition 3 implies that partial contagion can happen in three cases.

1. The conditions of case 2 hold:
In this case a∗ = a0 and b∗ = 1. Suppose first that we want to have final
contagion of exactly m′ (instead of ≥ m). We can then define

r̃
[2]
m′ :=


inf

a0,b0∈[0,1]2
b0 − a0

s.t. 1− a0 = m′

a0 ≥ α†(1)

b0 > max{a0, β
†(a0)}

 . (C.14)

Note that this problem is well-defined only if 1−m′ ≥ α†(1). In this case

r̃
[2]
m′ =

 inf
b0∈[0,1]

b0 − (1−m′)

s.t. b0 > max{1−m′, β†(1−m′)}

 = max{0, β†(1−m′)−(1−m′)}.

(C.15)
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Then

r̃[2]
m :=


inf

a0,b0∈[0,1]2
b0 − a0

s.t. 1− a0 ≥ m
a0 ≥ α†(1)

b0 > max{a0, β
†(a0)}

 = inf
1−α†(1)≥m′≥m

r̃
[2]
m′

= inf
1−α†(1)≥m′≥m

max{0, β†(1−m′)− (1−m′)}

= inf
α†(1)≤x≤1−m

max{0, β†(x)− x}.

2. The conditions of case 3 hold:
With the same arguments as above it can be shown

r̃[3]
m :=


inf

a0,b0∈[0,1]2
b0 − a0

s.t. b0 ≥ m
a0 < min{b0, α†(b0)}
b0 ≤ β†(0)


= inf

m≤y≤β†(0)

(
y − α†(y)

)+
.

3. The conditions of case 1 hold:
In this case, the initial seed set has measure m

Overall r̃∗m = min{m, r̃[2]
m , r̃

[3]
m , r̃

[4a]
1 , r̃

[4b]
1 } = min{r̃[2]

m , r̃
[3]
m , r̃

[4a]
1 , r̃

[4b]
1 }, which leads

to (B.3).

We next compute the limit-optimal set. First, for some A ⊂ [0, 1] and a function
g : [0, 1] → R, define arg inf operator as follows. x∗ ∈ arg infx∈A g(x) if there exists a
sequence (xt)t in A such that limt xt = x∗ and limt g(xt) = infx∈A g(x). Note that such
x∗ belongs to [0, 1] but does not necessarily belongs to A. Moreover, arg infx∈A g(x)
is non-empty. This can be seen as follows. There exists a sequence (x̃t)t in A such
that limt g(x̃t) = infx∈A g(x). The interval [0, 1] is compact, so (x̃t) has a convergent
subsequence, say (xt)t. Then limt xt ∈ arg infx∈A g(x). Notice that the sequence (xt)
in the definition of arg inf can be taken to be monotonic without loss of generality.
arg sup can be defined analogously.

First consider the case of r̃∗m = r̃
[4a]
1 . Take any a∗0 ∈ arg inf0≤x<α†(1)

(
β†(x)− x

)+
.

Take a monotonic sequence (ãt0)t in [0, α†(1)) with (ãt0)t → a∗0 and
(
β†(ãt0)− ãt0

)+ →
r̃

[4a]
1 . Set bt0 = a∗0 + r̃

[4a]
1 + εt for some εt ↓ 0. Then

bt0 > a∗0 + r̃
[4a]
1 = lim

t′

(
ãt′ +

(
β†(ãt

′
0 )− ãt′

)+
)
≥ lim

t′
β†(ãt

′
0 ).

If (ãt0)t ↑ a∗0, then set at0 = ãt0. Then we have at0 = ãt0 < α†(1) and bt0 > limt′ β
†(ãt

′
0 ) ≥

β†(ãt0) because β† is an increasing function (Lemma 8) and (ãt′)t′ is an increasing
sequence. If ãt ↓ a∗0, then set at0 = a∗0. Then we have at0 = a∗0 ≤ ã1

0 < α†(1) and
bt0 > limt′ β

†(ãt
′

0 ) ≥ β†(a∗0) = β†(at0) because β† is an increasing function and (ãt
′

0 )t′
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is a decreasing sequence with limit a∗0 = at0. In both cases, we have at0 < α†(1) and
bt0 > β†(at0). Thus, f(([at0, b

t
0])t) = 1 (by Proposition 3). Also, in both cases ([at0, b

t
0])t

is a decreasing nested sequence with intersection [a∗0, a
∗
0 + r̃

[4a]
1 ], which has measure

r̃
[4a]
1 . Then by definition, [a∗0, a

∗
0 + r̃

[4a]
1 ] is limit-optimal for min-seed.

Next consider the case of r̃∗m = r̃
[4b]
1 .Take b∗0 ∈ arg inf1≥y>β†(0)

(
y − α†(y)

)+
. Take

a monotonic sequence (b̃t0)t in (β†(0), 1] with b̃t0 → b∗0 and
(
b̃t0 − α†(b̃t0)

)+
→ r̃

[4b]
1 . Set

at0 = b∗0 − r̃1
[4b] − εt for some εt ↓ 0. Then we have

at0 < b∗0 − r̃
[4b]
1 = lim

t′

(
b̃t
′

0 −
(
b̃t
′

0 − α†(b̃t
′

0 )
)+
)
≤ lim

t′
α†(b̃t

′
0 ).

If b̃t0 ↓ b∗0, set bt0 = b̃t0 . Then we have bt0 = b̃t0 > β†(0) and at0 < limt′ α
†(b̃t

′
0 ) ≤ α†(bt0)

because α† is an increasing function (Lemma 8) and (b̃t
′

0 )t′ is a decreasing sequence.
If b̃t0 ↑ b∗0, set bt0 = b∗0. Then we have bt0 = b∗0 ≥ b̃10 > β†(0) and at0 < limt′ α

†(b̃t
′

0 ) ≤
α†(b∗0) = α†(bt0) because α† is an increasing function and (b̃t

′
0 )t′ is an increasing se-

quence with limit b∗0 = bt0. In both cases we have bt0 > β†(0) and at0 < α†(bt0). Thus,
f(([at0, b

t
0])t) = 1 (by Proposition 3). Also, in both cases ([at0, b

t
0])t is a decreasing nested

sequence with intersection [b∗0 − r̃
[4a]
1 , b∗0], which has measure r̃

[4b]
1 . Then by definition,

[b∗0 − r̃
[4a]
1 , b∗0] is limit-optimal for min-seed.

Consider the case of r̃∗m = r̃
[2]
m . Take any a∗∗0 ∈ arg infα†(1)≤x≤1−m

(
β†(x)− x

)+
.

Take a monotonic sequence (ãt0)t in [α†(1), 1−m] with (ãt0)t → a∗∗0 and
(
β†(ãt0)− ãt0

)+ →
r̃

[2]
m . Note that a∗∗0 ∈ [α†(1), 1−m]. Set bt0 = a∗∗0 + r̃

[2]
m + εt for some εt ↓ 0. Then

bt0 > a∗∗0 + r̃[2]
m = lim

t′

(
ãt′ +

(
β†(ãt

′
0 )− ãt′

)+
)
≥ lim

t′
β†(ãt

′
0 .

If (ãt0)t ↑ a∗∗0 , then set at0 = ãt0. Then bt0 > limt′ β
†(ãt

′
0 ) ≥ β†(ãt0) because β† is an

increasing function and (ãt′)t′ is an increasing sequence. If ãt ↓ a∗∗0 , then set at0 = a∗∗0 .
Then we have bt0 > limt′ β

†(ãt
′

0 ) ≥ β†(a∗∗0 ) = β†(at0) because β† is an increasing function
and (ãt

′
0 )t′ is a decreasing sequence with limit a∗∗0 = at0). In both cases, we have

at0 ∈ [α†(1), 1 −m] and bt0 > β†(at0). Thus, f(([at0, b
t
0])t) = 1 − at0 (by Proposition 3).

In both cases, 1 − at0 ≥ 1 − a∗∗0 ≥ m, and so f(([at0, b
t
0])t) ≥ m. Also, in both cases

([at0, b
t
0])t is a decreasing nested sequence with intersection [a∗∗0 , a

∗∗
0 + r̃

[2]
m ], which has

measure r̃
[2]
m . Then by definition, [a∗∗0 , a

∗∗
0 + r̃

[2]
m ] is limit-optimal for min-seed

Finally consider the case of r̃∗m = r̃
[3]
m . Take b∗∗0 ∈ arg infm≤y≤β†(0)

(
y − α†(y)

)+
.

Take a monotonic sequence (b̃t0)t in [m,β†(0)] with b̃t0 → b∗∗0 and
(
b̃t0 − α†(b̃t0)

)+
→ r̃

[3]
m .

Note that b∗∗0 ∈ [m,β†(0)] .Set at0 = b∗∗0 − r̃
[3]
m − εt for some εt ↓ 0. Then we have

at0 < b∗∗0 − r̃[3]
m = lim

t′

(
b̃t
′

0 −
(
b̃t
′

0 − α†(b̃t
′

0 )
)+
)
≤ lim

t′
α†(b̃t

′
0 ).

If b̃t0 ↓ b∗∗0 , set bt0 = b̃t0 . Then we have at0 < limt′ α
†(b̃t

′
0 ) ≤ α†(bt0) because α† is an

increasing function and (b̃t
′

0 )t′ is a decreasing sequence. If b̃t0 ↑ b∗∗0 , set bt0 = b∗∗0 . Then
we have at0 < limt′ α

†(b̃t
′

0 ) ≤ α†(b∗∗0 ) = α†(bt0) because α† is an increasing function
and (b̃t

′
0 )t′ is an increasing sequence with limit b∗∗0 = bt0. In both cases we have bt0 ∈
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[m,β†(0)] and at0 < α†(bt0). Thus, f(([at0, b
t
0])t) = bt0 (by Proposition 3). In both cases,

bt0 ≥ b∗∗0 ≥ m, and so f(([at0, b
t
0])t) ≥ m. Also, in both cases ([at0, b

t
0])t is a decreasing

nested sequence with intersection [b∗∗0 − r̃
[3]
m , b∗∗0 ], which has measure r̃

[3]
m . Then by

definition, [b∗∗0 − r̃
[3]
m , b∗∗0 ] is limit-optimal for min-seed.

C.10 Proof of Corollary 1

Degrees and cutoff iterators
Consider the GUA graphon WGUA(u, v) = 1−max {u, v}.

d(u) =

∫ 1

0
WGUA(u, v)dv =

∫ 1

0
(1−max {u, v}) dv

=

∫ u

0
(1− u) dv +

∫ 1

u
(1− v) dv

= u(1− u) +
1

2
(1− u)2 =

1

2
(1− u2).

For u ≤ a,

d(u, (a, b)) =

∫ b

a
(1−max {u, v}) dv =

∫ b

a
(1− v) dv =

1

2
((1− a)2 − (1− b)2)

d(u, (a, b)) > τd(u)((1− a)2 − (1− b)2) > τ(1− u2)

⇐⇒ u2 > 1− τ−1((1− a)2 − (1− b)2)

⇐⇒ u >
√

max{0, 1− τ−1((1− a)2 − (1− b)2)} = α(a, b)

For u ≥ b,

d(u, (a, b)) =

∫ b

a
(1−max {u, v}) dv =

∫ b

a
(1− u) dv = (1− u)(b− a)

d(u, (a, b)) > τd(u)(1− u)(b− a) >
τ

2
(1− u2)

⇐⇒ u < 2(b− a)τ−1 − 1

⇐⇒ u < min
{

1,max
{

0, 2(b− a)τ−1 − 1
}}

= β(a, b)

Crossing functions
For any a, b ∈ [0, 1]

α(a, b) < a ⇐⇒ 1− τ−1((1− a)2 − (1− b)2) < a2

⇐⇒ τ(1− a2) < (1− a)2 − (1− b)2

⇐⇒ 0 < (1 + τ)a2 − 2a+
(

1− τ − (1− b)2
)

⇐⇒

[
a <

1−
√
τ2 + (1 + τ) (1− b)2

1 + τ

]
∨

[
a >

1 +
√
τ2 + (1 + τ) (1− b)2

1 + τ

]
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Hence

α†(b) = max

{
0,

1−
√
τ2 + (1 + τ) (1− b)2

1 + τ

}
Moreover

β(a, b) < b ⇐⇒ 2(b− a)τ−1 − 1 < b

⇐⇒
(
2τ−1 − 1

)
b < 1 + 2τ−1a

⇐⇒ b <
1 + 2τ−1a

2τ−1 − 1

Hence

β†(a) = min

{
1,

2a+ τ

2− τ

}
Therefore, α and β both satisfy single-crossing.
The solution to interval min-seed

r̃∗m = min

{
inf

0≤x<max{1−m,α†(1)}

(
β†(x)− x)

)+
, inf

1≥x>min{m,β†(0)}

(
x− α†(x)

)+
}

= min

{
inf

1≥x>min{m,1−α†(1)}

(
β†(1− x)− (1− x)

)+
, inf

1≥x>min{m,β†(0)}

(
x− α†(x)

)+
}

= min

{
inf

1≥x>min{m, 2τ
1+τ }

min

{
x,

τ

2− τ
(2− x)

}
, inf

1≥x>min{m, τ
2−τ }

(
x− α†(x)

)+
}

= min

{
min

{
min

{
m,

2τ

1 + τ

}
,

τ

2− τ

}
, inf

1≥x>min{m, τ
2−τ }

(
x− α†(x)

)+
}

= min

{
m,

τ

2− τ
, inf

1≥x>min{m, τ
2−τ }

(
x− α†(x)

)+
}

= inf
x>min{m, τ

2−τ }

(
x− α†(x)

)+
.

This implies that the optimal seed always involves left contagion or no contagion.

r̃∗m = inf
x>min{m, τ

2−τ }

(
x− α†(x)

)+

= inf
x>min{m, τ

2−τ }

(
x−max

{
0,

1−
√
τ2 + (1 + τ) (1− x)2

1 + τ

})+

= inf
x>min{m, τ

2−τ }

{
x− 1−

√
τ2+(1+τ)(1−x)2

1+τ x ≥ 1−
√

1− τ
x x < 1−

√
1− τ

.

Note that x and x− 1−
√
τ2+(1+τ)(1−x)2

1+τ are both increasing functions. Thus
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r̃∗m =


τ

2−τ −
1−
√
τ2+(1+τ)(1− τ

2−τ )2

1+τ m ≥ τ
2−τ

m− 1−
√
τ2+(1+τ)(1−m)2

1+τ
τ

2−τ > m ≥ 1−
√

1− τ
m 1−

√
1− τ > m

(C.16)

Resilience and complete contagion

We can see that the resilience is r̃∗1 = τ
2−τ−

1−
√
τ2+(1+τ)(1− τ

2−τ )2

1+τ . The corresponding
limit-optimal seed is 1−

√
τ2 + (1 + τ) (1− τ

2−τ )2

1 + τ
,

τ

2− τ

 .

Partial contagion
It is not possible to have contagion of exact size m′ ∈ ( τ

2−τ , 1). Hence τ
2−τ is a

discontinuity point in terms of the size of contagion.
Contagion of exact size m′ ∈

(
1−
√

1− τ , τ
)

is achieved with the limit-optimal
seed set (

1−
√
τ2 + (1 + τ) (1−m′)2

1 + τ
,m′

)
.

Contagion of exact size m′ < 1−
√

1− τ is possible only when there is no contagion.
This can be achieved with any seed of size m′.

Interval max-reach

• If ρ > τ
2−τ −

1−
√
τ2+(1+τ)(1− τ

2−τ )2

1+τ , by equation (C.16), f̃∗ρ = 1.

• If τ
2−τ −

1−
√
τ2+(1+τ)(1− τ

2−τ )2

1+τ > ρ > 1 −
√

1− τ , then f̃∗ρ is given by ρ = f̃∗ρ −
1−

√
τ2+(1+τ)(1−f̃∗ρ )2

1+τ , which is equivalent to

f̃∗ρ =
ρ(1 + τ)−

√
(ρ− τ)2 + ρ2τ

τ

• If ρ < 1−
√

1− τ , then f̃∗ρ = ρ for any seed.

C.11 Proof of Corollary 2

Degrees and cutoff iterators
WMM (u, v) = min {u, v} (1−max {u, v}).

d(u) =

∫ 1

0
WMM (u, v)dv =

∫ 1

0
min {u, v} (1−max {u, v}) dv

=

∫ u

0
min {u, v} (1−max {u, v}) dv +

∫ 1

u
min {u, v} (1−max {u, v}) dv

=

∫ u

0
v (1− u) dv +

∫ 1

u
u (1− v) dv =

u2

2
(1− u) + u

(1− u)2

2
=
u(1− u)

2
.
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For u ≤ a,

d(u, (a, b)) =

∫ b

a
min {u, v} (1−max {u, v}) dv =

∫ b

a
u (1− v) dv = u

(1− a)2 − (1− b)2

2

d(u, (a, b)) < τd(u) ⇐⇒ u < 1− τ−1((1− a)2 − (1− b)2)

Hence
α(a, b) = max

{
0, 1− τ−1((1− a)2 − (1− b)2)

}
.

For u ≥ b,

d(u, (a, b)) =

∫ b

a
min {u, v} (1−max {u, v}) dv =

∫ b

a
v (1− u) dv = (1− u)

b2 − a2

2

d(u, (a, b)) > τd(u) ⇐⇒ u < τ−1(b2 − a2)

Hence
β(a, b) = min

{
1, τ−1(b2 − a2)

}
.

Crossing functions
For all a, b ∈ [0, 1],

α(a, b) < a ⇐⇒ 1− τ−1((1− a)2 − (1− b)2) < a

⇐⇒ 0 < (1− a)2 − τ(1− a)− (1− b)2

⇐⇒
[
1− a < 1

2

(
τ −

√
τ2 + 4(1− b)2

)]
∨
[
1− a > 1

2

(
τ +

√
τ2 + 4(1− b)2

])
⇐⇒ 1− a > 1

2

(
τ +

√
τ2 + 4(1− b)2

)
⇐⇒ a < 1− 1

2

(
τ +

√
τ2 + 4(1− b)2

)
hence

α†(b) = max

{
0, 1− 1

2

(
τ +

√
τ2 + 4(1− b)2

)}
and

β(a, b) < b ⇐⇒ τ−1(b2 − a2) < b

⇐⇒ b2 − τb− a2 < 0

⇐⇒
[
b >

1

2

(
τ −

√
τ2 + 4a2

)]
∧
[
b <

1

2

(
τ +

√
τ2 + 4a2

)]
⇐⇒ b <

1

2

(
τ +

√
τ2 + 4a2

)
= β†(a)
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hence

β†(a) = min

{
1,

1

2

(
τ +

√
τ2 + 4a2

)}
.

Therefore, α and β both satisfy single-crossing.
The solution to the interval min-seed
In general, we have

r̃∗m = min

{
inf

1≥x>min{m,1−α†(1)}

(
β†(1− x)− (1− x)

)+
, inf

1≥x>min{m,β†(0)}

(
x− α†(x)

)+
}

Note that infx>min{m,1−α†(1)}
(
β†(1− x)− (1− x)

)+
and infx>min{m,β†(0)}

(
x− α†(x)

)+
are identical problems (as the MM graphon is symmetric). So

r̃∗m = inf
1≥x>min{m,β†(0)}

(
x− α†(x)

)+

= inf
1≥x>min{m,τ}

(
x−max

{
0, 1− 1

2

(
τ +

√
τ2 + 4(1− x)2

)})+

= inf
1≥x>min{m,τ}

({
1
2

(
τ +

√
τ2 + 4(1− x)2

)
− (1− x) if x > 1−

√
1− τ

x if x < 1−
√

1− τ

)

Both x and 1
2

(
τ +

√
τ2 + 4(1− x)2

)
− (1− x) are increasing in x. So

r̃∗m =


1
2

(
τ +

√
τ2 + 4(1− τ)2

)
− (1− τ) if m > τ

1
2

(
τ +

√
τ2 + 4(1−m)2

)
− (1−m) if τ > m > 1−

√
1− τ

m if 1−
√

1− τ > m

(C.17)

Resilience and complete contagion

We can see that the resilience is 1
2

(
τ +

√
τ2 + 4(1− τ)2

)
− (1 − τ). The two

following sets are both limit-optimal seeds(
1− 1

2

(
τ +

√
τ2 + 4(1− τ)2

)
, τ

)
(

1− τ, 1

2

(
τ +

√
τ2 + 4(1− τ)2

))
.

Partial contagion
It is not possible to have contagion of exact size m′ ∈ (τ, 1). Hence τ is a disconti-

nuity point in terms of the size of contagion.
Contagion of exact size m′ ∈

(
1−
√

1− τ , τ
)

is achieved optimally with either one
of the two limit-optimal seeds(

1− 1

2

(
τ +

√
τ2 + 4(1−m′)2

)
,m′
)
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(
1−m′, 1

2

(
τ +

√
τ2 + 4(1−m′)2

))
Contagion of exact size m′ < 1−

√
1− τ is possible only when there is no contagion.

This can be achieved with any seed of size m′.
Interval max-reach

• If ρ > 1
2

(
τ +

√
τ2 + 4(1− τ)2

)
− (1− τ), by equation (C.17), f̃∗ρ = 1.

• If 1
2

(
τ +

√
τ2 + 4(1− τ)2

)
− (1 − τ) > ρ > 1 −

√
1− τ , then f̃∗ρ is given by

ρ = 1
2

(
τ +

√
τ2 + 4(1− f̃∗ρ )2

)
− (1− f̃∗ρ ), which is equivalent to f̃∗ρ = 1− ρ(τ−ρ)

2ρ−τ .

• If ρ < 1−
√

1− τ , then f̃∗ρ = ρ for any seed.

D Contagion in graphons with heterogeneous

thresholds

Here, we consider contagion in an Erdős-Rényi graphon in which the threshold
function is τ(u) = u. In this case, the threshold of every label is heterogeneous. More-
over, in a sampled network, this corresponds to the case in which agents’ thresholds
are drawn uniformly at random as in Kempe et al. (2003) and Lim et al. (2016). We
start by calculating the fraction of labels that will be infected in step t.

Initial seed: Let C := µ(C0) denote the measure of the set C0. Then a fraction C
of labels is infected initially, and a fraction 1− C of labels remains uninfected. Let us
focus on xt, the fraction of the initially unseeded labels that become infected. At the
end of the initial step, we have that x0 = 0.

Step 1: Since
∫
C0
pdv/

∫ 1
0 pdv = µ(C0), all unseeded labels with a threshold less

than µ(C0) = C are infected in the first step. Recall that thresholds are uniformly
distributed in [0, 1], hence the probability that a label has a threshold less than C is
simply C. Since there is a fraction of 1−C labels that are not in the seed set, we can
expect a fraction of x1 = C(1 − C) labels to be newly infected in Step 1. Therefore,
there is a fraction of C + x1 infected labels in total at the end of Step 1.

Step 2: All unseeded labels with a threshold less than µ(C1) = C+x1 get infected.
Again the probability of having such a threshold is C+x1 and there are 1−C candidates
(note that here we do not distinguish whether a label was already infected in Step 1).
Hence, there is a fraction of x2 = (C + x1)(1− C) labels that were not in the seed set
and are infected in Step 2. Therefore, there is a fraction of C + x2 infected labels in
total at the end of Step 2.

...
Step t: All remaining labels with a threshold less than µ(Ct−1) = C + xt−1 get

infected. Hence, there is a fraction of xt = (C + xt−1)(1 − C) labels that were not in
the seed set and are infected in Step t. Therefore, there is a fraction of C +xt infected
labels in total at the end of Step t. Figure 15 illustrates the first three steps of the
process when C = 1

2 . Note that the contagion process in the graphon does not depend
on p in this example (consistent with the fact that p simplifies in Eq. (2.3)).
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Figure 15: First three steps of contagion in the graphon with C = 1
2 .

Figure 16: Comparison between contagion in networks with n agents sampled from a Erdős-Rényi model
(with p = 0.1 and C = 0.1) for different values of n and contagion computed according to formula (D.1) .
For each value of n we show the evolution of the fraction of infected individuals in each of the 100 repetitions
(three plots on the left) and the average evolution compared with formula (D.1) (right).

More generally, we can write

xt = (1− C)(xt−1 + C),

with x0 = 0. We can solve this recursive equation to obtain that

xt = (1− C)(1− (1− C)t)

of the initially unseeded labels are infected at time t. Therefore, the total fraction of
labels that are infected at time t in the infinite population limit is

C + xt = 1− (1− C)t+1. (D.1)

In our approximation, as t → ∞, the fraction of infected labels goes to 1 for any
positive fraction of initial seeds and for any p ∈ (0, 1].

Figure 16 (right) compares the contagion process averaged across 100 sampled net-
works to our analytical approximation for a continuum of labels. We can see that
the approximation works well for reasonable values of p and number n of agents and
accurately captures most of the dynamics of contagion.
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