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1 Introduction

The awkward chain of events that so upset the bankers in 2008 began with the collapse of
Lehman Brothers. Panic spread, the dollar wavered, and world markets fell. Interconnected-
ness of the financial system, it was suggested, allowed the Lehman Brothers’ fall to threaten
the stability of the entire system. The possibility that the failure of one firm will trigger
the widespread failure of otherwise healthy firms is called systemic risk. Even the failure of
a non-financial firm, such as General Motors, will, via its suppliers, have spillovers into the
non-automotive sector. Indeed, the 2009–2014 restructuring plan filed by General Motors
says:

“The systemic risk to the automotive industry and the overall U.S. economy are
considerable, just as the bankruptcy of Lehman had a ripple effect throughout
the financial industry . . .”

These events inspired scholars to characterize network structures conducive to systemic risk,
which is the risk that shocks to a part of the system propagate and damage the entire
system. With some exceptions, these papers assume an exogenously given network. A node
(or subset of them) is subjected to a shock and the propagation of the shock across the
network is studied. Absent are reasons for the presence of links between nodes. In this
paper, a link between two nodes represents a potentially lucrative joint project. However,
each link increases the possibility of contagion. In the presence of a trade-off between being
exposed to systemic risk and having more projects, we ask what kinds of networks would
be formed? Systemic risk is not unique to financial networks. It is a concern in supply
chains and the web of firms linked by joint projects or trade credits. In these examples, other
externalities are present, but they are not a focus of this paper.

We propose a simple model of contagion that spreads across agents whom we call firms. In
the model, firms form links and become counterparties. Links represent joint ventures, and
each link is subjected to a good or a bad shock. We assume the networks formed are stable
in the sense that no subset of firms has an incentive to deviate and choose a different set of
links. A formal definition appears in Section 2.2.

A bad shock to a link makes firms incident to that link default. Moreover, any firm that
has a defaulting counter-party also defaults. We also allow direct shocks to firms (called
node shocks), which can be interpreted as idiosyncratic risk of default. Systemic risk is the
probability of the event that every firm chooses to default. Section 4 describes a detailed
micro foundation of this model in terms of firms borrowing from outside lenders and investing
as pairs into projects.
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The main insights are enumerated below.

1. Core-periphery networks emerge despite systemic risk.

Core-periphery networks are considered ubiquitous; see, for example, Bech and Atalay (2010)
and Craig and Von Peter (2014). They consist of a subset of nodes (the core) that are
densely connected to each other and a periphery of nodes partitioned into clusters that are
all connected to the core but ‘lightly’ connected to each other. Examples of such networks
are displayed in Figure 1. Prior work has shown how core-periphery networks can emerge
endogenously systemic risk (except Farboodi (2015) and Erol (2016)). Such structures may
facilitate systemic risk because the core, with its dense interconnections, encourage contagion.
Financial institutions that occupy the core, for example, are thought to be contributors to
systemic risk for this very reason.1

In this paper, stable networks exhibit a core-periphery structure even when firms are ex-ante
identical. The core arises because of a coordination failure between lenders and firms that
leads to heterogeneous interest rates for firms, as described in Section 4. Firms better able
to withstand counter-party failures and link shocks occupy the core acting as a barrier to
contagion between distinct components in the periphery. However, each firm, including those
in the core, is susceptible to failure caused by idiosyncratic node shocks. Accordingly, the
core makes the default risk of the entire system highly correlated and becomes a major source
of systemic risk.

Small core Large core

Figure 1: Structure of the stable network: core-periphery
1High level of interconnectedness of certain institutions is seen as a systemic threat. See, for example,

http://www.fsb.org/what-we-do/policy-development/systematically-important-financial-institutions-sifis/.
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2. Volatility Paradox

If the probability of a good shock to a link increases, the network becomes more intercon-
nected at a rate at which systemic risk always increases. This is a network version of the
volatility paradox of Brunnermeier and Sannikov (2014): low volatility leads investors to
behave in ways that make the financial system more fragile and prone to crisis. We show
that the volatility paradox persists, even when we relax the condition that a single defaulting
counterparty causes its own default and network externalities are mild. In the absence of
contagion, there is no volatility paradox, therefore, it emerges because of contagion.

3. Systemic risk vs. systematic risk: What can we learn from the network about
the probability of system-wide failure?

Systematic risk is the risk of system-wide failure due to common exposures of institutions
to risks outside the system, whereas systemic risk is the risk that the system fails via the
propagation of bad shocks. When shocks are perfectly correlated, i.e., under systematic
risk, the network formed is strongly interconnected. When shocks are idiosyncratic, i.e.,
under systemic risk, such a strongly interconnected network is formed only when shocks
are likely to be good. Accordingly, an endogenously formed and strongly interconnected
network implies an upper bound on the underlying systemic risk, whereas such a network is
uninformative about the underlying systematic risk. One who observes a very dense network
must understand the correlation structure in order to correctly assess the probability of
system-wide failure.

We think this relevant to the debate between two theories of financial destruction advanced
to explain the 2008 financial crisis. The first, described above, is dubbed the ‘domino theory’
of systemic risk. The alternative, advocated by Edward Lazear,2 is dubbed the ‘popcorn’
theory of systematic risk. Lazear describes it thusly in a 2011 opinion piece in the Wall Street
Journal:

“The popcorn theory emphasizes a different mechanism. When popcorn is made
(the old-fashioned way), oil and corn kernels are placed in the bottom of a pan,
heat is applied and the kernels pop. Were the first kernel to pop removed from
the pan, there would be no noticeable difference. The other kernels would pop
anyway because of the heat. The fundamental structural cause is the heat, not
the fact that one kernel popped, triggering others to follow.

Many who believe that bailouts will solve Europe’s problems cite the Sept. 15,
2008 bankruptcy of Lehman Brothers as evidence of what allowing one domino

2Chair of the U.S. President’s Council of Economic Advisers during the 2007-2008 financial crisis.
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to fall can do to an economy. This is a misreading of the historical record.
Our financial crisis was mostly a popcorn phenomenon. At the risk of sounding
defensive (I was in the government at the time), I believe that Lehman’s downfall
was more a result of the factors that weakened our economic structure than the
cause of the crisis.”

Related literature

This paper contributes to four streams in the economic analysis of networks. We summarize
them here. Detailed comparisons to prior work can be found in the body of the paper.

Systemic Risk in Networks: Much prior work, such as Acemoglu et al. (2015), Eboli
(2019), Elliott et al. (2014), Gai et al. (2011), and Glasserman and Young (2015), takes the
network as exogenous. We consider fully strategic network formation. Acemoglu et al. (2015)
contains a discussion of network formation but within a set of limited alternatives. Babus
(2016) also has a model of network formation, but one in which agents share the goal of
minimizing the probability of system-wide default. In our model, agents are concerned with
their expected payoffs and only indirectly with the possibility of system wide failure.

Our network formation model is closest to Blume et al. (2013). However, in that paper, the
risk of a node initially defaulting to start contagion is independent of the network formed
because the exogenous shocks hit nodes. In our model, the likelihood of a node initially
defaulting to start contagion depends on the network, in particular, the degree of the node,
because the exogenous shocks hit links.

Contagion in Networks: Our paper is also a contribution to the literature on contagion in
networks (see, for example, Morris (2000) and Goyal and Vega-Redondo (2005)). It extends
this literature by endogenizing the networks and incorporating uncertain payoffs.

Core-Periphery Structure: Many financial networks exhibit a core-periphery structure.
A variety of explanations have been offered. Farboodi et al. (2017), for example, shows that
a core-periphery structure emerges in a search model where some agents choose to trade
faster than others. Wang (2016) demonstrates that a core-periphery structure emerges in
an inter-dealer market with ex-ante identical agents as the result of a trade-off between
trade competition and inventory efficiency. None of these papers account for contagion and
systemic risk. Two papers that do are Farboodi (2015) and Erol (2016). The agents in
these papers are ex-ante heterogenous. This paper generates a core-periphery structure with
ex-ante identical agents.

Structure
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For ease of exposition, we begin with a reduced form of the model in which payoffs are
given exogenously. Section 2 considers the simplest setting of ex-ante identical firms and
link shocks only. We characterize group stable networks, discuss how systemic risk varies
with the probability of a good shock and the volatility paradox. This setting, as we show,
corresponds to the periphery in our larger model.

In Section 3 we enlarge the model to include firms with varying (and exogenously given)
degrees of resilience to contagion and node shocks. Under group stability, firms that are
more resilient form the core of the network, the less resilient occupy the periphery.

Section 4 micro-founds the model in Section 3 in terms of firms borrowing from outside
lenders and investing as pairs into projects. It also endogenizes the degree of resilience of
each firm to shocks. In this way, we show how a core-periphery structure can emerge even
with ex-ante identical agents. Section 5 concludes.

2 The Periphery

2.1 The Model of the Periphery

Denote by N = {1, 2, ..., n} a finite set of firms. In what follows we will sometimes refer to
firms as nodes. A link {i, j} represents a joint venture between firms i and j. E ⊂ [N ]2 is the
set of links and (N,E) is the network. If {i, j} ∈ E, then i and j are called counterparties.
Denote by Di = {j ∈ N | {i, j} ∈ E} the set of counterparties of i and di = |Di| the degree of
i. There exists d̃ ≤ n − 1 such that di ≤ d̃ for all i. For each link {i, j} ∈ E, two outcomes
sij and sji are chosen by nature identically and independently. sij represents the net benefit
of firm i in its partnership with j. With probability α ∈ (0, 1), the link is good for i: sij = θ

where θ > 0 is a constant. With probability 1 − α, the link is bad for i: sij = θ − γ where
γ > 0 is a constant. Denote by bi the number of links that are bad for i.

Upon the realization of shocks, each firm i either continues or defaults. If i continues, it
receives the sum of ∑j∈Di sij. Furthermore, for each j ∈ Di, if j defaults, i’s benefit from its
link with j is reduced by β > 0, from sij to sij−β. This captures the extra costs that must be
incurred to cover for j’s role in the project. Denote the number of defaulting counterparties
of i by fi . i’s payoff from continuation is ui = diθ − fiβ − biγ. If ui is non-negative, i
continues. If ui is negative, i defaults and gets an outside option 0. Losses due to bad shocks
(γ’s) can trigger defaults, which can propagate via counter-party losses (β’s). This describes
the contagion, which is exogenous for now.
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Assumption 1. d̃θ < min {β, γ} .

To see the implication of Assumption 1 recall that di ≤ d̃ for all i ∈ N . Therefore, under
d̃θ < γ, one bad shock to an incident link causes the firm to drop all its projects. Because
d̃θ < β, a single defaulting counter-party causes a firm to drop all its projects. In short, a
single bad shock to any link triggers a contagion, and no firm is able to withstand either a
shock or a defaulting counterpart.

All firms that are connected face a risk of contagion, and this is the only risk they face.3

The links provide no diversification benefit.4 The consequences of relaxing Assumption 1 are
discussed in Appendix B.2.

To summarize, each firm enjoys a benefit from each direct link to other firms, but also bears
a default risk from each direct and indirect linkage to other firms. Whenever, one of the
links in the component containing the firm is hit by a shock, then all firms in the component
default. The next proposition states that the expected payoff of a firm depends only their
degree and the number, ẽ, of links in the component that contains it which are not incident
to it. The model is closest to Blume et al. (2013). The difference is that in our model the
likelihood of a node initially defaulting to start contagion depends on the network.

Proposition 1. The expected payoff of a firm with degree d and whose component has ẽ other
links than the d links of the firm is given by Ũ (d, ẽ) := dα2(ẽ+d)θ.

The functional form of Ũ (d, ẽ) makes clear that holding ẽ fixed, the benefit from d increases
up to a point and then declines. The benefit declines in ẽ the number of indirect links. In
the sequel it is more convenient to write the firm’s payoff as U (d, e) := dα2e where e = ẽ+ d

is the total number of links in the relevant component.

2.2 Stability and the Periphery

As network formation occurs prior to the realization of shocks, firms evaluate each network
(N,E) with respect to their expected payoffs in the continuation. The payoffs in the contin-

3We recall some standard definitions from graph theory. i and j are adjacent if they have a link. Adjacent
firms are counterparties in our model. If i and j are adjacent, we say i and {i, j} are incident. i and j are
connected if one can be reached from the other via a sequence of links. The component of i is the set of all
firms that are connected to i and all links between these firms. A clique is a collection of firms with a link
between each pair. A disjoint clique a component which is a clique. The order of a clique is the number of
firms in the clique. A (d+ 1)−clique is disjoint clique of order d+ 1. Note that each firm in a (d+ 1)-clique
has degree d.

4Elliott et al. (2014) call this a network of full integration. They study the trade-off between integration
and diversification but do not characterize the network formed. Although the models are different, our paper
can be seen as the network formed in the corner case of full integration and no diversification.
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uation are given by U(d, e). There is an upper bound d̃ ≤ n− 1 such that firms cannot form
more than d̃ links. Consider a candidate network (N,E) and a subset of firms N ′ ⊂ N . A
feasible deviation by N ′ allows firms in N ′ to simultaneously

1. add absent links within N ′,

2. delete any link incident to at least one vertex in N ′.

A profitable deviation by N ′ ⊂ N is a feasible deviation that strictly improves the expected
payoff of each member of N ′. (N,E) is bilaterally stable if there are no profitable deviations
for any N ′ ⊂ N with |N ′| ≤ 2. (N,E) is called a group stable if there is no profitable
deviation for any N ′ ⊂ N .5

Bilateral stability is a permissive solution concept because such networks are immune to
deviations by pairs only. Proposition A1 in Appendix A shows that they consist of disjoint
cliques of varying size (see Blume et al. (2011), Elliott et al. (2020) and Erol (2016) for similar
results). To see why cliques are essential for stability, suppose three firms {i, j, k} and also
that the links (i, j), (j, k) are present whereas {i, k} is not. Consider firms i and k. If they
cut the links (i, j) and (j, k) and replace them with (i, k) their degrees remain unchanged.
However, they are now part of a component with strictly fewer links. Hence, their expected
payoffs can only increase. Therefore, stability induces connected firms to be counterparties
of each other which implies that the network must consist of disjoint cliques.

As there can be multiple bilaterally stable networks, we focus on group stability, which, when
they exist, are unique (up-to labeling). The expected payoff of a firm in a (d+ 1)-clique of
firms is

V (d) = U (d, (0.5)d (d+ 1)) = dαd(d+1)θ.

Let d∗ = arg maxd≤d̃ V (d) and call this the optimal degree. Note that V is strictly log-
concave (so single-peaked) and d∗ is generically well defined. In fact, d∗ = min{bx∗c, d̃}
where x∗ satisfies 1

x∗
+α2x∗ = 1. While x∗ cannot be determined explicitly, it is the case that

y∗ − 1 ≤ x∗ ≤ y∗ + 0.25 where y∗ =
√

(−2 ln(α))−1.

Theorem 1. Suppose that n is divisible by d∗+1. There exists a unique (up-to permutation)
group stable network and it consists of disjoint (d∗ + 1)-cliques.

The network formed is illustrated in Figure 2. In the absence of the divisibility assumption
group stable networks need not exist. However, as shown in Appendix A, a group stable

5In Dutta and Mutuswami (1997) and Erol (2016) this solution concept is called strongly stable. Farboodi
(2015) calls this solution concept group stable. We think the second more evocative. Jackson and Van den
Nouweland (2005) considers a stronger notion that rules out deviations by any coalition V that weakly
improves the payoff of all members, and strictly improves the payoff of at least one member.
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network, if it exists, must consist of as many disjoint (d∗ + 1)-cliques as possible, and the
remainder firms are also in a disjoint clique. Existence fails when the number of firms in the
remainder falls below a threshold.6 One can eliminate this possibility by restricting the size
of a deviating coalition. We think it simpler to invoke the divisibility assumption. It is not
unusual in the network formation literature, see, for example Elliott et al. (2020).7

Figure 2: Structure of the periphery under group stability

Group stable networks need not be Pareto efficient, and even if they are, they need not be
utilitarian efficient (maximize sum of expected payoffs of firms among all realized networks).8

Within the context of systemic risk, Farboodi (2015) in a different model, finds that group
stable networks are utilitarian inefficient. Interestingly, this is not the case here.

Consider a connected component with e links. A firm in the component with degree d enjoys
an expected payoff of dα2eθ. Therefore, the sum of payoffs of firms within the component is
2eα2eθ. It follows that the problem of finding an efficient network devolves into two parts:
how to partition firms into components and how many links to put into each component.

Theorem 2. Suppose that n is divisible by d∗ + 1. A network is utilitarian efficient if and
only if it is group stable.

Observe first that only the number of links in a component matters for the efficiency of the
component. Therefore, conditional on a component having e links, we want it to have as few
nodes as possible so as to have as many components as possible. Thus, components should
be as dense as possible, i.e., nearly cliques. The particular functional form of the expected
payoffs ensures that no link is absent from a component. Conditional on disjoint cliques, the
efficient size of a clique should maximize the average payoff of firms in the clique. Average
payoff in a disjoint clique with d+ 1 firms is dαd(d+1), and so the efficient order of the clique

6This problem does not arise with bilaterally stable networks because cliques are not all of the same size.
7We can replace the divisibility assumption in Theorem 1 with a variant of farsighted stability at the

cost of uniqueness. For example, weaken strong stability by precluding only the profitable deviations after
which the resulting network does not involve any profitable deviations by a coalition that includes any of the
previous deviators. This ensures that the networks in Proposition A2 are strongly stable.

8Under a stronger notion of stability, see Jackson and Van den Nouweland (2005), that excludes Pareto
improvements, group stability implies Pareto efficiency.
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is d∗ + 1. Note that, all bilaterally stable networks other than the group stable network are
inefficient.

Absent the divisibility assumption, a utilitarian efficient network will coincide with the group
stable network (if it exists) and consist of as many disjoint (d∗ + 1)-cliques as possible, with
the remaining firms also in a disjoint clique.

2.3 Peripheral Systemic Risk and the Volatility Paradox

Peripheral systemic risk The disjoint clique structure observed here will be present in
the periphery of the larger model. Accordingly, the systemic risk that we study in this
section corresponds to the peripheral systemic risk of the larger model, i.e., the risk that
most peripheral firms default because of contagion initiated by shocks to the periphery firms.
Later, when we study the full model of the core-periphery, we will be interested in central
systemic risk, i.e., the risk that most peripheral firms default because of contagion initiated
by shocks to the core.

The network (periphery) formed consists of many disjoint cliques. Each clique is subject to
contagion within itself. There is an αd∗(d∗+1) probability that all shocks to a clique are good,
therefore no firm in the clique defaults. Otherwise, all firms in the clique default. Since
cliques are disjoint, the defaults of cliques are independent events. This allows us to pin
down the exact distribution of the number of defaults, which is reported in Appendix B.1.

Systemic risk is typically viewed as the tail event that a large fraction of the system is
damaged. For simplicity, we focus on the extreme tail event that all peripheral firms default,
and call the probability of this event systemic risk. Normalized systemic risk will refer to
systemic risk to the power n−1. Appendix B.1 derives the distribution of the number of
defaults and examines its first and second moment as other measures of systemic risk. The
probability that all firms in a disjoint clique default is 1 − αd

∗(d∗+1). Since there are n
d∗+1

many components, normalized systemic risk (in the absence of the core) is

(
1− αd∗(d∗+1)

)(d∗+1)−1

. (1)

Peripheral volatility paradox Of interest is how systemic risk changes in response to
α, which is the model parameter that captures the exogenous and fundamental risk in the
economy. On one hand, for a fixed network, as α increases, projects become less risky,
contagion is triggered less often, and so the economy is in a fundamentally better state. This
reduces any reasonable measure of systemic risk for a fixed network. On the other hand, for
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fixed α, more interconnected networks create more contagion in our model. This increases
systemic risk. In the endogenous network that is formed, as α increases, d∗ increases, and
the network becomes more interconnected. This is depicted by the solid line in Figure 3a. A
priori it is unclear whether the reduction of risk due to higher α or the increment in risk due
to higher interconnectedness dominates.

In Figure 3b, the solid line is the normalized systemic risk. The kinks arise from the integrality
constraint on d∗. Systemic risk of the group stable network increases with α (modulo the
non-monotonicity due to discreteness of the model).9 We call this the peripheral volatility
paradox.

Figure 3a: Degree d∗ in α Figure 3b: Systemic risk in α

Figure 3: Degree d∗ and systemic risk

As we are unable to derive a closed-form expression for systemic risk as a function of α (due
to discreteness), we derive tight lower and upper bounds on it. These bounds grow and
eventually merge with each other as α increases. This shows that the graphs in Figure 3 are
not a trick of the eye.

Let x∗ be the unique positive solution to α2x + 1
x

= 1. Let Ã = {α : x∗ ∈ N} and denote
by e, Euler’s constant. Note that Ã is a countably infinite set of points with a unique limit
point, 1.

Proposition 2. If we relax the constraint d∗ ≤ d̃, then, d∗ = bx∗c for α 6∈ Ã and d∗ ∈ {x∗−
1, x∗} for α ∈ Ã. The probability that a given firm defaults lies in [1−α(x∗−1)x∗ , 1−αx∗(x∗+1)].
The lower bound is increasing and the upper bound is decreasing in α, both converging to
1 − e−0.5 as α approaches 1. Normalized systemic risk is between

(
1− αx∗(x∗−1)

)(x∗)−1

and(
1− αx∗(x∗+1)

)(x∗+1)−1

. Both bounds are increasing and converge to 1 as α approaches 1.

9The same holds true for the variance of the number of defaulting firms.
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The bounds on the individual firm default probabilities and systemic risk are tight in the
sense that they are attained on Ã. As α increases from between two consecutive values in
Ã, the actual probabilities fall continuously from the upper bound to the lower bound since
d∗ is fixed but α increases. Hence, the actual default probability of a firm oscillates between
the bounds and around 1 − e−0.5 as α increases, and approaches 1 − e−0.5 as α approaches
1. Actual normalized systemic risk oscillates between the bounds and converges to 1 as α
approaches 1. The oscillations are due to discreteness. Proposition 2 allows us to consider a
proxy for optimal degree (−2 ln(α))−0.5 ∈ [x∗ − 1, x∗] and a proxy for the default probability
of a firm 1− e−0.5.10

From Proposition 2 we know that for a given clique, there is a roughly 1− e−0.5 probability
that all firms in the clique default and a roughly e−0.5 probability that no firms in the clique
default. Therefore, normalized systemic risk is approximately

(
1− e−0.5

)√−2 ln[α]

which is the dashed line Figure 3b.

Note, systemic risk is increasing in α, (modulo oscillations around the limit due to discrete-
ness) illustrating the peripheral volatility paradox. As α increases, the clique size grows
unboundedly. However, the default probability of each clique is bounded away from zero
(oscillating around the limit due to discreteness). So, the probability that all cliques fail
increases. This becomes apparent when we use the approximate values. The default prob-
ability of a clique is roughly constant, but the number of cliques decrease, which increases
systemic risk.11

The corresponding estimate for systemic risk is then

(
1− e−0.5

)n√−2 ln[α]

which is the dashed line Figure 3b. Note that the estimated systemic risk is increasing in α,
yielding the peripheral volatility paradox. For fixed n, as α increases, the clique size grows,

10There are other reasonable approximations. For example, one can take arg maxy∈R yα
y(y+1) = − 1

4 +
( 1

16 − (2 ln(α))−1)0.5 as an approximation for d∗ and αy(y+1) for the default probability of a firm. Going
forward, we will alert the reader to whether the selection of the approximation has a material effect on the
insights.

11Recall that there is an upper bound d̃ ≤ n− 1 on the number of links a firm can have. Once α becomes
too large and hits

(
1− d̃−1)(2d̃)−1

, d∗ becomes d̃ and the cliques cannot get any larger. Systemic risk cannot
get any larger and starts decreasing. d̃ could very well be equal to n − 1, meaning that the cliques would
grow until becoming the complete network.
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and the number of cliques decreases. There are a smaller number of cliques, each of which
has a constant probability of failing. So, the probability that all cliques fail increases.12,13

A closer examination of the systemic risk as the probability of a good shock increases reveals
that the mean number of defaults is bounded away from zero (oscillating around the limit
due to discreteness) yet, the variance of the number of defaults increases as well as systemic
risk. The mean and variance are pictured in Figure 4. The added risk due to the change in
the sizes of cliques d∗ + 1 offsets the reduced risk from increasing the probability of a good
shock α. The probability that a clique fails is bounded away from zero, remaining roughly
constant close to the limit. However, as the cliques grow, the defaults of single firms become
more correlated. Therefore, the variance of defaults increases. The heightened correlation
increases the probability of the tail event, i.e., systemic risk.

Mean Variance
Figure 4: Mean and variance of the number of defaults

In our framework, the variance of defaults and systemic risk increase in α because of endoge-
nous correlations arising from network formation, summarized by the clique structure and d∗.
This yields a network-rooted version of the volatility paradox propounded by Brunnermeier
and Sannikov (2014). The key idea is that better fundamentals encourage firms to take on
more investments, but these investments are the conduits of contagion above and beyond
simply being the exogenous sources of risk. As such, investment returns are endogenously
correlated through network formation, giving rise to volatility paradox.

12Notice that if one increases n, systemic risk actually decreases because the probability that more cliques
fail is smaller than the probability that few cliques fail, given that the failures of cliques are independent
events with probability 1− e−0.5.

13Recall that there is an upper bound d̃ ≤ n − 1 on the number of links a firm can have. Once α hits(
d̃−1

d̃

) 1
2d̃ , d∗ becomes d̃ and the cliques cannot get any larger. Systemic risk cannot get any larger and starts

decreasing. d̃ could very well be equal to n − 1 meaning that the cliques would grow until becoming the
complete network.
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The volatility paradox holds for other measures of systemic risk as well.14 We illustrate this
for some measures here with figures. Figure 4 shows the mean and variance of the number
of defaults. Figure 5 shows the probability 90% and 50% of firms defaults. Figure 6 shows
the mean and variance of welfare, measured as the sum of firms’ payoffs. In all these cases,
variances and tail risks are roughly increasing in α for the same reason as systemic risk.

Normalized prob. that > 90% default Prob. that > %50 default

Figure 5: Probability that at least a certain fraction of firms default

Figure 6: Welfare mean and variance

Increased correlation by itself does not justify an increase in variance or tail risk. The
elasticity of substitution between link benefits (d here) and the continuation probability
(αd(d+1) here) also matter. In our model, increased risk-taking and reduced fundamental
risk, 1 − α, somewhat offset each other. Even when the fundamental risk 1 − α approaches
zero, firms take on a large number of projects that keeps the default risk of a clique bounded
away from zero. Therefore, connectivity of the network, i.e., the reduction in the number
of cliques, is the primary determinant of variance and tail risk. However, if the endogenous
risk of a clique fell faster than the number of cliques, (and so approach zero) there would

14Appendix B.1 contains a brief analysis.
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potentially be no volatility paradox. Appendix B.2 further illustrates that the volatility
paradox in our model is a consequence of contagion, not of the specific parameters.

2.4 Popcorn vs. dominoes

Earlier, we drew attention to a debate about whether interconnectedness of firms is a signif-
icant contributor to systemic risk. An alternative theory is that the risk faced is systematic,
i.e., popcorn. We model the popcorn story as perfect correlation in the link shocks. Suppose
the probability that all links are good is σ and the probability they are all bad is 1−σ. Now
there is no risk of contagion, and all risk is due to common exposures. The next two results
establish that “popcorn” and “dominoes” are observationally equivalent in terms of network
structure but differ in probability of system-wide failure.

Proposition 3. Suppose that n is divisible by d̃+1. Under ‘popcorn’, the unique group stable
(and the unique bilaterally stable) network consists of disjoint cliques of order d̃+ 1.

When firms face systematic risk (popcorn) rather than systemic risk (dominoes), they form
highly interconnected networks in order to reap the benefits of trade. Under popcorn, all firms
are in the same boat, and the major risk is due to common exposure rather than contagion.
There is no need to refrain from forming too many links. If the underlying common shock is
good, then firms get higher returns by having more links. If the underlying common shock
is bad, eliminating some links cannot change the outcome.

The distinction between dominoes and popcorn is related to what can be estimated about the
probability of system-wide failure from network structure. Suppose the probabilities of good
shocks are α ∈ (0, 1) and σ ∈ (0, 1) respectively. If the realized network consists of (d+ 1)-
cliques where d < d̃, it can be inferred that the risk is dominoes. The realized degree pins
down the values of α and the systemic risk. In particular, systemic risk is given by Equation
(1), which is roughly (1 − e−0.5)

n
d+1 . On the other hand, if the realized network consists of

(d̃ + 1)-cliques, only a partial inference of the correlation structure and the probability of
system-wide failure can be drawn.

Theorem 3. Given, a network consisting of (d̃ + 1)-cliques. Conditional on the popcorn
world, the probability of system-wide failure can range from 0 to 1. Conditional on the
dominoes world, the probability of system-wide failure can range from 0 to

(
1−

(
1− d̃−1

) d̃+1
2

) n
d̃+1

.
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If α < (1 − d̃−1)(2d̃)−1 , then, the upper bound, d̃, on the optimal degree does not bind. If
α > (1 − d̃−1)(2d̃)−1 and the upper bound on degrees binds, the probability that a clique
defaults is 1−αd̃( ˜d+1). Combining this with the threshold for α that generates (d̃+ 1)-cliques
gives us an upper bound on systemic risk.

Note that the upper bound is smaller than 0.5 for all n ≥ 6 and d̃ ≤ n − 1. Therefore,
an outside observer who observes an endogenously formed dense network and believes it is
the dominoes world would think that probability of system-wide failure is smaller than 0.5,
whereas under the popcorn world, probability of system-wide failure can be arbitrarily close
to 1. Similar results hold for all measures of systemic risk considered in Appendix B.1.

In sum, upon observing a dense network but not the correlation structure, one cannot accu-
rately upper bound the probability of system-wide failure. Mistakenly believing that the risk
is systemic rather than systematic can lead to underestimating the probability of system-wide
failure.

3 The Core

3.1 The Model of the Core-Periphery

Here we extend the model in two dimensions. First, we introduce node shocks: shocks that
directly impact firms rather than links. They model idiosyncratic operational firm costs.
Contagion can be triggered by node shocks, which introduces another source of systemic
risk. Second, we introduce contagion-resilient firms: their main risk of defaults stems from
node shocks. Section 4 contains an interpretation.

Contagion resilient firms don’t default when their incident links are hit by a bad shock or
when their counterparties default (Assumption 2 below), but they do when subject to a bad
node shock. If a bad node shock is unlikely (Assumption 3 below), such firms act as a ‘fire
break’ against contagion. This makes contagion resilient firms attractive counterparties to
all firms, generating a core-periphery structure. In Section 4, we show how such contagion
resilient firms can emerge endogenously from firms that are initially ex-ante identical.

There are two types of firms: contagion-resilient types and normal types. There are m
contagion-resilient firms denotedM = {1, ...,m} and n normal firms denoted N = {m+1, ...,
m+n}. All pairs of firms can form links. As before, we assume that firms form group stable
networks given the expectation of their payoffs in the continuation. After the network is
formed, links receive good or bad shocks. Moreover, each firm i receives a node shock which
is good or bad. A firm with a bad node shock defaults and earns 0.
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For normal firms, the probability of a good link shock is α and a good node shock is ζ. A
normal firm i ∈ N with di counterparties, fi many defaulting counterparties, and bi many
bad links that receives a good node shock, has payoff ui = diθ − βfi − γbi if it continues. If
ui ≥ 0, i continues and enjoys ui. Otherwise, i defaults and earns 0. Assumption 1 still holds
for normal firms.

For contagion-resilient firms, the probability of a good link shock is α′ and a good node
shock is ζ ′. A contagion-resilient firm i ∈ M that enjoys a good node shock, with di many
counterparties, fi many defaulting counterparties, and bi many bad links has payoff u′i =
diθ
′ − β′fi − γ′bi if it continues. If u′i ≥ 0, i continues and gets u′i. Otherwise i defaults and

gets 0. The difference between contagion-resilient and normal firms is encapsulated in the
following assumption.

Assumption 2. θ′ > γ′ + β′.

Assumption 2 ensures that a contagion-resilient firm will not default because of losses caused
by a shock to an incident link or counterparty losses.

Therefore, the only way a contagion-resilient firm can trigger a contagion is when it is subject
to a bad node shock. In fact, the model allows ζ ′ < ζ, so that contagion-resilient firms can
be more vulnerable to node shocks than normal firms. In the rest of the paper, contagion-
resilient firms will simply be called resilient firms, but bear in mind that such firms can
trigger contagion more often than normal firms.

Under Assumption 2 we can pin down the expected payoffs of firms in a given network as
follows. Call a path on the network a normal path if it consists of normal firms only.15 For
i ∈ N , consider the maximal rooted subtree rooted at i. This is the acyclic subgraph that
contains i, the union of all normal firms which can be reached by normal paths from i, and
the links in those paths. Denote the number of normal firms in this subtree by dNi . Denote
by dMi the number of resilient firms that are counterparties of the dNi normal firms in the
subtree rooted at i. Let eNi be the number of links in the subtree incident to these dNi firms.
Denote by eMi the number of links in the cut set that separates the subtree from the rest of
the network.

Note that the probability that a normal firm i does not default is given by

pi := ζd
N
i ζ ′d

M
i α2eNi +eMi . (2)

15The trivial path from i ∈ N to itself is also a normal path.
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Proposition 4. The expected payoff of i ∈ N is ui = diθpi. The expected payoff of i ∈M is

ui = diζ
′ (θ′ − α′γ′ − ζ ′β′)−

 ∑
j∈N∩Di

(
pj − ζ ′2

) β′.

3.2 Stability and Efficiency of the Core-Periphery

The final piece needed to determine the group stable network is that resilient firms do not have
significantly more idiosyncratic risk than normal firms, and so resilient firms are preferred
counterparties with respect to the probability of triggering contagion.

Assumption 3. Resilient firms’ node risk is not too high compared to normal firms: ζ ′ > αζ.

This does not preclude ζ > ζ ′, so resilient firms can actually be riskier in terms of node
shocks. If ζ ′ = ζ, this assumption is redundant.

Group stable networks When a normal firm i forms a link with a normal firm j, it must
consider three risks aside from contagion through j. First, j can suffer a bad node shock
with probability 1 − ζ. Second, j can suffer a bad link shock at link {i, j} with probability
1− α. Third, i can suffer a bad link shock at link {i, j} which has probability 1− α.

If i forms a link with a resilient firm k, it must consider only two such risks. First, k can
suffer a bad node shock with probability 1 − ζ ′. Second, i can suffer a bad link shock at
link {i, k} with probability 1 − α. While k can suffer a bad link shock at link {i, k} with
probability 1− α′, this does not make k default, so it is not a risk for i.

Since ζ ′α > ζα2, resilient firms are preferred counterparties, although it is possible that ζ ′ <
ζ. Set d∗N = arg maxd≥0 (m+ d) (αmζ)d αd(d+1) and d∗M = arg max d (αζ)d =

⌊
1

1−αζ

⌋
< m.

Note that if d∗M ≤ m then d∗N = 0. We confine ourselves to group stability here and report
results on bilateral stability in the appendix.

Theorem 4. Suppose that n is divisible by d∗N + 1.

(Case of small core) If d∗M > m, a network is group stable if and only if it is a core-periphery
of the following form:

1. (Core) Each resilient firm is counterparties with all resilient firms and all normal firms.

2. (Periphery) Each normal firm is counterparties with all resilient firm and some normal
firms. Excluding resilient firms and their incident links, normal firms form disjoint
cliques of order d∗N + 1 among themselves.
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(Case of large core) If d∗M ≤ m, a network is group stable if and only if it is a core-periphery
of the following form:

1. (Core) Each resilient firm is counterparties with all resilient firms and some normal
firms.

2. (Periphery) Each normal firm has d∗M resilient counterparties and no normal counter-
parties.

Small core Large core

Figure 7: Structure of group stable networks

The possible group stable networks are displayed in Figure 7. Assumption 2 and Assumption
3 make resilient firms preferred counterparties. The only risk they impose on their counter-
parties arises from their node shock. As ζ ′ > αζ this makes a resilient firm’s node shock less
of a risk than a normal firm’s combined risk from the node shocks and the link shock. This
does not mean that linking with the resilient firms entails no risk.

Group stability of the cliques in the periphery is a consequence of Theorem 1. Group stabil-
ity of the links to the core is a consequence of resilient firms being preferred counterparties,
despite the fact that connecting to the core still entails counter-party risk. For complete-
ness, Theorem 3 in the appendix contains a discussion of the structure of bilaterally stable
networks.

Efficiency In the model of the periphery with homogeneous firms, the utilitarian efficient
network coincides with the group stable one. In the model of core-periphery with hetero-
geneous firms, firm payoffs differ across the core and the periphery and group stability and
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utilitarian efficiency no longer coincide. While the efficient network can be core-periphery, it
need not coincide with either the small or large core that characterizes group stability.

Theorem 5. Suppose that θ′, γ′ are sufficiently large, i.e., much larger than θ. The unique
utilitarian efficient network is the core-periphery in which

1. each resilient firm is counterparties with all resilient firm and all normal firms,

2. and each normal firm is counterparties with all resilient firms and no normal firms.

The idea is simple. Since θ′ is large enough, efficiency dictates that core firms have links with
all firms. Since γ′ is large enough, it is efficient to lower the default risk for normal firms so
as to reduce the externality they impose on core firms. This is achieved by not having any
links between peripheral firms.

3.3 Central Systemic Risk and Volatility Paradox

Central systemic risk Linking to the core that consists of resilient firms is not risk-free
because resilient firms are still subject to bad node shocks. For example, when d∗M ≥ m, if a
resilient firm at the core suffers a bad node shock, it drives the entire periphery into default.
Thus, the core is the major source of systemic risk in the economy. We call the probability
of system-wide failure due to shocks to firms in the core central systemic risk. There is still
peripheral systemic risk in the economy, which is the probability of the event that all cliques
of peripheral nodes fail due to shocks to the peripheral firms.

Figure 8 illustrates the probability distribution of the number of defaults. The tail event in
which most firms fail has high probability because if a resilient firm in the core suffers a bad
node shock and defaults, it drags many normal firms in the periphery into default. Normal
firms’ risk of default becomes highly correlated through the node shocks of the core.
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Figure 8: Probability distribution of the number of defaults
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Figure 9: Cumulative probability distribution of the number of defaults with respect to
sources of systemic risk

A closed-form expression for the PDF of the distribution of the number of defaults can also
be determined. We have shown how this can be done for the periphery in Appendix B.1. One
can incorporate the core similarly. We skip this for brevity and focus on the tail event that
all firms in the periphery fail, i.e., systemic risk. In the case of a small core, all peripheral
firms have links with all core firms. One bad node-shock to the core causes all peripheral
firms into default. If all core firms enjoy good node-shocks, all peripheral firms default only
if all cliques in the periphery get bad shocks of their own. The systemic risk is then given by

(1− ζ ′m)︸ ︷︷ ︸
Central systemic risk

+ ζ ′m
(

1− ζd∗N+1α(m+d∗N)(d∗N+1)
) n
d∗
N

+1

︸ ︷︷ ︸
Peripheral systemic risk

. (3)

In the case of a large core, there are multiple core-periphery networks that can be formed.
In each of them, each peripheral firm has d∗M core counterparties and no peripheral counter-
parties. Systemic risk can take various values depending on the overlap between the set of
counterparties of each peripheral firm.16 The simplest possibility is that all peripheral firms
are counterparties with the same set of d∗M core firms. In this case, systemic risk is given by

(
1− ζ ′d∗M

)
︸ ︷︷ ︸

Central systemic risk

+ ζ ′d
∗
M

(
1− ζαd∗M

)n
︸ ︷︷ ︸

Peripheral systemic risk

. (4)

In what follows, we refer to (4) when we study systemic risk under the large core. In the
16Two sets X and Y have non-trivial overlap if (X\Y ) ∪ (Y \X) 6= ∅. When there are non-trivial overlaps

between sets of counterparties of peripheral firms, no closed form expression for systemic risk exists. Nev-
ertheless, we can pin down a value for systemic risk when there are no non-trivial overlaps between sets of
counterparties of any pair of peripheral firms.
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next section, we study the comparative statics of systemic risk to see whether the volatility
paradox is present in the core-periphery network as well.

Central volatility paradox In Section 2.3, we identified and discussed a peripheral volatil-
ity paradox: as the probability of good link shocks α increase, the probability that all firms
in the periphery fail via contagion initiated by shocks to the periphery (i.e., peripheral sys-
temic risk) increases. This was specific to the periphery and cliques that emerge within the
periphery. Under the core-periphery structure, similar arguments apply to the cliques within
the periphery. As for the core, can we expect a different form of volatility paradox due to
the shocks to the core? How does the probability that all firms in the periphery default (i.e.
central systemic risk) due to shocks to firms in the core change as the probability of good
shocks increase?

Consider the shocks to the links. First, we must understand how the structure of the network
and the degree of peripheral firms change as α changes. Recall that resilient firms that
occupy the core are preferred counterparties. Start with some small α such that d∗M ≤ m.
Then peripheral firms want to be counterparties with only core firms. Thus d∗N = 0 and so
d∗ = d∗M . As α increases, eventually, d∗M > m. At this point, there are not enough core firms,
and d∗ = d∗M + d∗N . In fact, d∗ can be written compactly as d∗ = min {d∗M ,m} + d∗N .17 The
way in which d∗ changes as a function of α is portrayed in Figure 10a.

Next, we study how systemic risk changes in α. Beginning with some small α, the periphery
is willing to form only a few links with the core: d∗M < m. Recall that d∗M = arg maxd d (ζ ′α)d.
As α increases, so does d∗M , and so the periphery is willing to form more links with the core.
The risk internalized by a peripheral firm from adding one more link comes from both the
node risk of the core firm, 1− ζ ′, and the link risk of the newly added link 1−α. Peripheral
nodes internalize the added default risk, 1−ζ ′α, and add links accordingly as α increases. The
change in d∗M keeps the risk (ζ ′α)d

∗
M constant (modulo the discreteness of the model). But

central systemic risk increases with 1− ζ ′ not 1− ζ ′α. d∗M increases, so the central systemic
risk 1 − (ζ ′)d

∗
M increases. As for combined systemic risk, we need to consider peripheral

systemic risk too. In fact, αd∗M increases as α increases because (ζ ′α)d
∗
M is kept constant

by the endogenous choice of d∗M . Therefore, the peripheral systemic risk decreases because
1−αd∗M decreases. As for the combined effect, note that the core is a more significant source
of correlation in the default risk of the periphery. A Taylor approximation shows that the
increase in central systemic risk dominates the decrease in peripheral systemic risk. This is
plotted in Figure 10b for small to medium α. Combined systemic risk increases in α.

17It is worthwhile to note that d∗ = arg maxd dζ
′min{d,m}ζd−min{d,m}αd+(d−min{d,m})2

.
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Once α reaches a medium level, d∗M becomes m, and there are no more firms in the core to
form links with. The peripheral nodes start to link with each other. d∗N starts growing. What
happens to systemic risk once α is large enough that d∗M = m? Now central systemic risk does
not change anymore because there cannot be more connections to the core. Central systemic
risk is set at 1− (ζ ′)m. Recall that d∗N = arg maxd≥0 (m+ d) (αmζ)d αd(d+1). As α increases,
d∗N grows and the cliques in the periphery get larger. It turns out that the increment in
d∗N offsets the increase in α and peripheral systemic risk increases. In order to see why,
note that ζd∗Nα2d∗N(d∗N+m+1) is made constant (modulo discreteness) by the endogenous choice
of d∗N , whereas the risk of a clique is 1 − ζd

∗
Nαd

∗
N(d∗N+m+1). d∗N increases as α increases.

In turn, ζd∗N decreases so that α2d∗N(d∗N+m+1) increases. Then αd
∗
N(d∗N+m+1) increases while

ζd
∗
Nα2d∗N(d∗N+m+1) is constant. Therefore, ζd∗Nαd∗N(d∗N+m+1) decreases. Accordingly, the risk

of a clique increases as α increases in addition to the increased risk from larger cliques and
increasing correlation.

Peripheral systemic risk increases in α. Peripheral systemic risk is the only source of change
in combined systemic risk as α increases because central systemic risk is constant. Therefore,
combined systemic risk increases in α. This is plotted in Figure 10b for medium to large α.
These comparative statics are summarized in Table 1.18
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Figure 10a: Degree of normal firms in α

S
ys
te
m
ic
ri
sk

Probability of a good shock α

Figure 10b: Systemic risk in α

Figure 10: Volatility paradox

Changing the probability of good node shocks impacts the network as well. However, the
network never switches from d∗ ≤ m to d∗ > m by changing ζ or ζ ′. Whether the network
is in the “small core” region or the “large core” region is determined by α. Thus we relegate
the analysis of the node shocks to Appendix B.3.

18In fact, the probability that an individual firm fails is also increasing in α. Nevertheless, since all defaults
in the periphery are highly correlated through the shocks to the core, systemic risk also increases.
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Systemic w.r.t.: As α increases (link-shock)
risk source: Central Peripheral Combined
d∗ ≤ m: Increasing Decreasing Increasing

when α crosses a threshold, d∗ crosses m
d∗ > m: Constant Increasing Increasing

Table 1: Central and peripheral systemic risk in the probability of good link-shock α

4 Micro-foundation

In this section we micro-found the payoff structure used in Section 3 to show how a core-
periphery network can emerge endogenously even when firms are ex-ante identical. This is
in contrast to other explanations that rely on ex-ante heterogeneous agents, see for example
Farboodi (2015), Erol (2016) and Wang (2016).

A link will correspond to a joint project funded by loans obtained from outside lenders.
The project requires a monetary investment and costly effort from each counter-party before
project maturity. Firms are free to drop any projects in their portfolio by not exerting effort.
Dropped projects yield no return to the party that dropped them. Moreover, the return from
a project is reduced if one’s counter-party drops the project.

Firms that enjoy low-interest rates, hence high profit margins, correspond to the contagion
resilient firms of Section 3 and therefore, will occupy the core. Firms that face a high-interest
rate will end up occupying the periphery. A high-interest rate reduces the profit margins of
a peripheral firm, making it unlikely to repay its debt. Therefore, peripheral firms have a
higher default probability than non-peripheral ones. Hence, charging a high-interest rate to a
peripheral firm is a self-fulfilling prophecy. An analogous argument will mean that core firms
enjoy a low-interest rate. The resulting network and corresponding default probabilities will
then be consistent with the interest rates charged.

We first describe firm payoffs and show they satisfy the assumptions of Section 3. There are
k firms and each firm i has access to a line of credit Li, at rate Ri ≥ 1. Simultaneously with
lending between lenders and firms, firms form a network of joint bilateral investments among
themselves. Pi is firm i’s per-project investment cost. Accordingly, firm i borrows diPi in
total out of its credit line Li to fund projects with di counterparties. In return, i promises to
pay Ri ≥ 1 per unit borrowed, but it is protected by limited liability. The number of links a
firm can form is bounded by Li/Pi. This bound corresponds to d̃i in the model.

After undertaking a project with firm j, firm i bears an uncertain management cost Cij for
the project, which can be either high (Ci) or low (Ci). The probability of enjoying the low
management cost is αi. These random costs correspond to the link shocks sij in the model.
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Each firm also bears an operational cost κi, i.e., cost to continue their operations and stay in
business, irrespective of their investments and project management costs. This cost can be
either zero with probability ζi or take the value Ki > 0 with the complementary probability.
This corresponds to the node shocks in the model.

Upon realization of the shocks, each firm i decides whether to stay in business at cost κi or
exit the market to avoid incurring κi. If i stays, it also chooses which among the projects it
has invested into keep and which to drop. In this case, if i drops the project with j, i receives
nothing from the project, but also avoids the management cost Cij. If i keeps the project
with j, i incurs the management cost Cij. i’s return depends on the effort of j. If j also
keeps the project, i gets revenue Bi from the project. If j drops the project, i gets revenue
Bi from the project, where C < Bi < Bi. In the event that i exits the market, all of its
projects are dropped.

The assumptions needed to map this setup on to our model is that for all i, Bi − Ci is
positive and Ki is sufficiently large. In this case, firms with high operational costs (node
shocks) exit, and drop all projects. For firms with low operational costs, it is a best response
to either keep all projects or drop all of them. This is formalized in Proposition A4 in the
appendix, and it can be seen simply as follows. If it is possible for i to get positive payoffs,
it will keep all projects because each project has a positive surplus as Bi − Ci > 0. If it is
impossible to obtain a positive payoff even after keeping all projects, then i prefers to drop
all of its projects. This ensures 0 payoff because i’s pecuniary payoff is protected with limited
liability, whereas dropping the projects avoids effort costs. This micro-founds the modeling
choice that firms have a binary action to continue (stay and keep all project) or default (exit,
or stay but drop all projects). For each firm i set

θi = Bi − Ci − PiRi, βi = Bi −Bi, γi = Ci − Ci. (5)

Then, i’s ex-post payoff is
diθ − fiβ − biγ

if it optimally continues, where fi is the number of counterparties that default and bi is the
number of link shocks.

If Ri is sufficiently close to P−1
i (Bi − Ci), one link shock or one defaulting counterparty

forces i into default. This is the case for peripheral firms. The counterpart of this parametric
restriction is Assumption 1. On the other hand, if Ri < P−1

i (Bi − Ci), no number of link
shocks or counterparty defaults can force i into default. This is the case for core firms. The
counterpart of this parametric restriction is Assumption 2. Therefore, Sections 2 and 3 are a
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special case of this microfoundation with two types of firms, one with high interest rate and
one with low interest rate. This is formalized in Proposition A5 in the appendix.

4.1 Core-periphery with ex-ante identical agents

We show that a core-periphery network will emerge in equilibrium when all firms are ex-ante
identical. We suppress all subscripts except for the endogenous variables. Assume that the
creditors of firm i consist of a unit mass of risk-neutral lenders, each of whom has L to
lend to the firm. Denote by Ri the endogenous interest rate that firm i faces. The lenders
are infinitesimal, so they take interest rates as given and decide whether to lend or not
independently of each other.

Definition. An equilibrium is defined as a collection of interest rates Ri one for each firm
i and a network among k firms, such that the following two statements hold:
• Given the network formed, Ri takes a value that makes the lenders to firm i indifferent
between lending or not.

• Given interest rates {Ri}i≤k, the network formed is group stable.

Assumption M 1. K > L
(
B−C
P
− 1

)
This ensures that being subjected to a large operational cost is sufficient to force firms into
default regardless of the interest rate. Under Assumption M1, interest rates must be at least
ζ−1 to provide a premium for the operational risk.

Assumption M 2. B−C
P

> 1
ζ

This ensures that a firm with the lowest possible interest rate ζ−1 faces no default risk other
than operational risk (node shock). Assumption M2 is the counterpart of Assumption 2.
Assumption M2 implies that B − C > 0. Then, it is a best response for each firm to either
keep all its projects or default on all of them.

Assumption M 3. B−C
P

> 1

ζ(αζ)b 1
1−αζc

> B−C
P
− min{B−B,C−C}

L
.

Assumption M3 concerns firms with a high interest rate, ζ−1 (αζ)−b
1

1−αζc. The leftmost
inequality implies that such firms have positive expected payoff by forming links whereas the
rightmost one implies that any link shock or counterparty default will result in the default
of the firm. This is the counterpart of Assumption 1.

Assumption 3 has no counterpart here since firms are ex-ante identical.
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Theorem 6. Suppose that Assumption M1, M2, M3 hold and k >
⌊

1
1−αζ

⌋
. Then, for each in-

tegral m between
⌊

1
1−αζ

⌋
and k, there exists an equilibrium such that m many firms face inter-

est rate ζ−1. The remaining n := k−m firms face interest rate ζ−1 (αζ)−b
1

1−αζc. The network
is core-periphery as described in Theorem 4, where the m firms that enjoy the low-interest
rate are in the core, and the remaining n firms with high-interest rate are the periphery.

4.2 Systemic Risk, Efficiency, and Policy

Here we compare the different equilibria in terms of their efficiency and systemic risk.

Theorem A1 in the appendix characterizes the equilibrium networks and we summarize it
here. There are three types of equilibrium networks.

1. Large-core equilibria
Peripheral nodes enjoy an interest rate R = ζ−1e.19 The size of the core is any m ≥ m

where m depends only on α, ζ. In these equilibria, each peripheral node has m links,
all with the core.

2. Medium-core equilibria
Peripheral nodes enjoy an interest rate R < ζ−1e and the core size is m2(R) where m2

is a decreasing function with values in [m,m) and m depends only on α, ζ.

3. Small-core equilibria
Peripheral nodes enjoy an interest rate R < ζ−1e and the core size is m1(R) where m1

is an increasing function with value less than m.

In medium-core and small-core equilibria, each peripheral firm is counterparties with all core
firms.

Suppose a sufficiently large number of firms for a clean analysis. All else fixed, the systemic
risk is roughly equal to the central systemic risk. In a large-core equilibria, each peripheral
firm has a fixed number of counterparties m in the core and none in the periphery.

Large core equilibria differ only in the number of firms that are in the core. The interest
rate is the same across all large core equilibria. The larger the core, the more efficient the
network. The larger the core, the lower its systemic risk because the core-counterparties of
the peripheral firms are more dispersed across the core. Hence, the default risk of peripheral
firms becomes less correlated.

19In the formal result we focus on values α, ζ such that integrality problems do not arise. For these values
we have ζ−1 (αζ)−b

1
1−αζ c = ζ−1e.
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Among the medium-core and small-core equilibria, interest rates vary. Nevertheless, it is
still the case that efficiency increases with the size of the core. Systemic risk, however, need
not decrease. This has implications for interventions designed to increase the size of the
core. In our model, this could be achieved by lowering the interest rate for peripheral firms.
Assume that the network adjusts to the intervention as m1(R) and m2(R) would suggest.
For medium-core equilibria, the size of the core decreases as the interest rate R faced by
peripheral firms is reduced. This makes the core face less shocks, reducing systemic risk. On
the other hand, for small-core equilibria, the size of the core increases with lower interest rates,
increasing systemic risk. Thus, more efficient core-periphery equilibrium networks become
more financially stable, and less efficient core-periphery equilibrium networks become less
financially stable in response to expansionary monetary policies.

5 Conclusion

This paper introduced a model of endogenous network formation and systemic risk which
furnishes three lessons. First, the network formed depends on the correlation between shocks
to links. Misconceiving this correlation causes one to underestimate the probability of system-
wide default. Second, even if the economy becomes fundamentally safer (the probability of
good shocks increases), the probability of system-wide default can increase. Systemic risk
increases because of the endogenous correlation of default risk that stems from network
formation. Finally, in spite of the fact that the core-periphery structure facilitates systemic
risk because the core with its dense interconnections encourages contagion, this does not
prevent their emergence. In fact, while efficiency increases with the size of the core, systemic
risk need not decline. This has implications for interventions designed to reduce systemic
risk. Whether such interventions reduce systemic risk or not will depend upon the size of the
core.
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Appendix A Proofs and Auxiliary Results

Proof of Proposition 1: expected payoffs

Proof. By Assumption 1, diθ ≤ d̃θ < γ. Therefore, one bad shock forces a firm into default.
Also diθ ≤ d̃θ < β, so that one defaulting counter-party forces a firm into default. That is,
either all shocks are good in the component and all firms continue their business, or at least
one shock is bad and all firms default. There are e links in the component. For each link,
two shocks, one for each incident firm, realizes. So 2e shocks realize in the component. There
is an α2e probability that the component survives in which case the firm with degree d has
payoff dθ. Otherwise, the firm defaults and earns 0. Thus, the expected payoff of a firm is
dα2eθ.

Bilateral stability

Proposition A 1. Any bilaterally stable network consists of disjoint cliques.
There exist two numbers d,d, and a decreasing function φ with φ (d) = d such that G = (N,E)
is bilaterally stable if and only if G consists of disjoint cliques and

1. either all cliques have orders between d+ 1 and d+ 1,
2. or only one clique has order less than d, say dG + 1 ≤ d, and all other cliques have

orders between φ (dG) + 1 and d+ 1.
There exists α < 1 such that for all α > α, there is an n such that for all n > n, there exists
a bilaterally stable network.20

Proof. Take three firms {i, j, k} and suppose the links (i, j), (j, k) are present whereas {i, k}
is not. Consider firms i and k. If they cut the links (i, j) and (j, k) and replace them with
(i, k) their degrees remain unchanged. However, they are now part of a component with
strictly fewer links. Hence, their expected payoffs strictly increases their payoff. Therefore,
all connected firms must be counterparties in bilaterally stable networks, meaning that all
components must be cliques in bilaterally stable networks.

Now fix a network that consists of disjoint cliques. We consider all types of deviations by
pairs from this network.

20α < α is needed to ensure d and d are not equal. n ≥ n is needed to ensure that orders of the cliques
can be arranged between d and d in way to sum up to n. Indeed, for small α, if n is odd, d = d = 2 and so
the smallest clique has to be singleton, but φ (1) > 1. So there does not exist a bilaterally stable network in
that case. If n and α are not too small, the orders of cliques in a bilaterally stable network can be arranged
in a way to sum up to n and we have existence.
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Case 1: Unilateral deviation. Consider firm i and a deviation in which i cuts di−y links and
now has y links. There are y + (di−1)di

2 links left in the component. Then, i’s payoff becomes
yα2y+(di−1)di . This is a profitable deviation if and only if

yα2y+(di−1)di > diα
(di−1)di ⇐⇒ yα2y > diα

2di .

Observe that the function F (x) = xα2x is log-concave, and so it is single-peaked. Single-
peakedness and y < di implies that

yα2y > diα
2di =⇒ (di − 1)α2(di−1) > diα

2di ⇐⇒ di >
(
1− α2

)−1
.

y could be equal to di − 1. Therefore, there does not exist any unilateral deviation (i.e., any
y) if and only if di ≤ (1− α2)−1 for all cliques.

Case 2 : Deviation by a pair in the same clique. Consider i and j in the same clique (so
di = dj) and a deviation in which i cuts di − y links and now has y links, whereas j cuts
di − z links and now has z links.

We can assume i and j have not cut their links {i, j}: instead of cutting the link {i, j} and
some more links with other firms in the clique, i and j could keep the link and cut one more
link with other firms in the clique. Hence, there exists a profitable deviation by i and j if
and only if there exists a profitable deviation in which i and j keep their own link. So we
can suppose that i and j keep their link and there are y+ z− 1 + (di−2)(di−1)

2 links left in the
component.

Then, i’s payoff becomes yα2y+2z−2+(di−2)(di−1) while j’s payoff becomes zα2y+2z−2+(di−2)(di−1).
Without loss of generality, suppose that y ≤ z. This is a profitable deviation if and only if

yα2y+2z−2+(di−2)(di−1) > diα
(di−1)di ∧ zα2y+2z−2+(di−2)(di−1) > diα

(di−1)di ⇐⇒

yα2y+2z−2+(di−2)(di−1) > diα
(di−1)di ⇐⇒ yα2y+2z > diα

4di .

If z = y there exists a profitable deviation in case 2 if and only if there exists y such that
yα4y > diα

4dl . As in case 1, single-peakedness and y < di implies that

yα4y > diα
4di =⇒ (di − 1)α4(di−1) > diα

4di ⇐⇒ di >
(
1− α4

)−1
.

Again, as in case 1, y could be equal to di−1. In this case there does not exist any profitable
deviation by a pair of firms in the same clique if and only if di ≤ (1− α4)−1 for all cliques.

Case 3: Deviation by a pair in different cliques. Consider i and j in different cliques who
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deviate jointly. If i and j do not form a link, then, this deviation must consist of two unilateral
deviations in which both i and j increase their individual utilities by cutting some of their
links in their own cliques. This is considered in case 1. So we can assume that case 3 consists
of deviations in which the deviators i and j do form a link.

Consider the deviation in which i cuts di−y links and adds the link with j. This leaves i with
y+1 links. After j cuts di−z links and adds the link with i it will have z+1 links. After the
deviation, in the component containing i and j, there are 2y+(di − 1) di+2+2z+(dj − 1) dj
links.

We first show that if i or j fail to preserve all of their existing links, i.e., y 6= di or z 6= dj,
this will not be a profitable deviation. Without loss of generality, suppose that y 6= di. Then,
y+ 1 ≤ di. Therefore, i’s payoff must be strictly larger than its previous payoff for this to be
a profitable deviation:

(y + 1)α2y+(di−1)di+2+2z+(dj−1)dj > diα
di(di+1). (6)

From case 1 we know it suffices to consider networks in which all degrees are less than
(1− α2)−1. That is, we can assume di ≤ (1− α2)−1. Then y + 1 ≤ di ≤ (1− α2)−1. By
single-peakedness of F (x) = xα2x, we have (y + 1)α2y+2 ≤ diα

2di . Substituting this back
into Equation (6) we get

diα
2diα(di−1)di+2z+(dj−1)dj ≥ (y + 1)α2y+(di−1)di+2+2z+(dj−1)dj > diα

di(di+1)

=⇒ α2z+(dj−1)dj > 1.

which is a contradiction.

Accordingly, we can assume that case 3 consists of deviations in which the deviating pair
i and j maintain all their links in their own cliques, i.e., y = di and z = dj, and add the
missing link {i, j} between them. This is a profitable deviation if and only if

(di + 1)αdi(di+1)+2+dj(dj+1) > diα
di(di+1) ∧ (dj + 1)αdj(dj+1)+2+di(di+1) > djα

dj(dj+1)

⇐⇒ (di + 1)α2+dj(dj+1) > di ∧ (dj + 1)α2+di(di+1) > dj

⇐⇒ di <
(
1− α2+dj(dj+1)

)−1
− 1 ∧ dj <

(
1− α2+di(di+1)

)−1
− 1.

Define ψ : [0,∞)→ R as ψ (x) :=
(
1− α2+x(x+1)

)−1
−1. Then, there is a profitable deviation

we need to consider in case 3 if and only if there are two separate cliques, with order di + 1
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and dj + 1 such that
di < ψ (dj) ∧ dj < ψ (di) .

Note that ψ is strictly decreasing, ψ (0) = (1− α2)−1 − 1 > 0 and limx→+∞ = 0. Denote by
d the unique fixed point of ψ: ψ (d) = d. Observe that ψ−1 is well defined on the interval
(0, ψ (0)]. Define φ : [0, ψ (0)]→ R as

φ (x) =

ψ (0) if x = 0,

min {ψ (x) , ψ−1 (x)} if x ∈ (0, ψ (0)] ,

φ is strictly decreasing and φ’s unique fixed point is d. Let d = (1− α4)−1. Next, we complete
the argument that verifies the necessary and sufficient conditions given in the Theorem.

For necessity suppose first that di < d and dj < d. Since ψ is strictly decreasing, it follows
that ψ (di) > ψ (d) = d > dj and similarly ψ (dj) > di. Then, i and j would deviate. Second,
suppose the clique that contains i is the smallest in the network (di = dG ). Suppose that
dG < d and dj < φ (dG). Then

dj < φ (dG) = min
{
ψ (dG) , ψ−1 (dG)

}
=⇒

dj < ψ (dG) ∧ dj < ψ−1 (dG) =⇒

dj < ψ (dG) ∧ ψ (dj) > dG.

Then i and j have a profitable deviation. In sum, conditional on all degrees being less than d,
if there is no profitable deviation, there are no two cliques with orders strictly less than d+ 1
or there is exactly one order strictly less than d + 1 but all others have orders larger than
φ (dG) + 1. Now we show that, conditional on all degrees being less than d, this condition is
sufficient as well.

Suppose that di ≥ d and dj ≥ d. Then di ≥ d =⇒ ψ (di) ≤ ψ (d) = d ≤ dj. Accordingly,
there are no profitable deviations between cliques that have size larger than d+1. Therefore,
if all cliques have size larger than d+ 1, there are no profitable deviations. Suppose that all
but one have size larger than d+ 1. Let di + 1 be the size of the remaining clique, which has
to be smallest clique: di = dG. Suppose that dj ≥ φ

(
dG
)
for all other dj’s. Then

dj ≥ φ (dG) = min
{
ψ (dG) , ψ−1 (dG)

}
=⇒

dj ≥ ψ (dG) ∨ dj ≥ ψ−1 (dG) =⇒
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dj ≥ ψ (dG) ∨ ψ (dj) ≥ dG.

Thus, there are no profitable deviations that involve the smallest clique. All other cliques
have size larger than d+ 1, so they also have no profitable deviations among each other.

Hence, we have shown in case 3 there are no profitable deviations (that have not been
accounted for in other cases) if and only if either all degrees are larger than d, or one clique
has order less than d + 1, say but all the others have it larger than φ (dG) + 1. Combining
all three cases concludes the proof for the necessary and sufficient condition.

For existence, L’Hopital’s rule can be used to show that the gap d− d grows unboundedly as
α grows. At some point, d− d ≥ 2 and so there must exist two integers in the interval

[
d, d

]
.

Take two of these integers, dde and dde+ 1. If n ≥ (dde+ 1)2 then

n−
⌊

n

dd] + 1

⌋
(dde+ 1) ≤ dde < dde+ 1 ≤

⌊
n

dd] + 1

⌋
=⇒

⌊
n

dd] + 1

⌋
(dde+ 2)− n > 0.

Then, the network consists of

• n−
⌊

n
dd]+1

⌋
(dde+ 1) many cliques of order dde+ 2 and

•
⌊

n
dd]+1

⌋
(dde+ 2)− n many cliques of order dde+ 1

is well-defined and bilaterally stable.

Necessary conditions for group stability

Proposition A 2. A group stable network must consist of a collection of disjoint cliques,
all but at most one of order d∗ + 1. The remaining clique must be of order at most d∗ + 1.

Proof. By Proposition A1 a group stable network (if it exists) is composed of disjoint cliques.
The payoff to a firm in a (d+ 1)-clique is V (d). First, no clique can have order d+1 > d∗+1
in the realized network. Otherwise, d∗ + 1 members would deviate by forming a (d∗ + 1)-
clique and cutting all other links. This would be a strict improvement since d∗ is the unique
maximizer of V (d). Second, there can be at most one clique which has order strictly less than
d∗+1. Recall that V (d) is single-peaked, and so it is increasing up to d∗ over integers. Then,
members of separate cliques each of which has less than d∗ order would deviate to forming a
larger clique (up to order d∗ + 1) to get their degree closer to d∗ and improve their payoffs.
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These two observations imply that there must be as many (d∗ + 1)-cliques as possible in the
network, and the remaining part must also be a clique.

Proof of Theorem 1: group stability

Corollary of Theorem 1 in Erol and Vohra (2020)

Proof of Theorem 2: efficiency

Proof. Fix an efficient network G and select from it a component with e links and call it S.
The total payoff of firms in the component S is 2eα2e. DefineW : R+ → R+ asW (x) = 2xα2x.
Note that W is log-concave, and so it is single-peaked. Set k∗ = arg maxx∈NW (x) as the
maximizer of W over integers. Since W is single-peaked, if e > k∗, by deleting one link
within S, the total payoff increases. So G cannot be efficient. Hence, e must satisfy e ≤ k∗.
If e < k∗ and if there is an absent link within component S, then, by adding that link, the
total payoff increases. So G cannot be efficient. Therefore, either e = k∗ or there are no
absent links in the component S, i.e., S is a clique.

Suppose that S is not a clique. Then, we must have e = k∗. Let r be the largest integer such
that (0.5)r(r− 1) + 1 < k∗ ≤ (0.5)r(r + 1). Note, there at least r + 1 firms in S. Otherwise,
there cannot be more than (0.5)r(r− 1) links in S. Denote the average of payoffs of firms in
S by u. Since there are at least r + 1 firms in S and the sum of payoffs in S is 2k∗α2k∗ , we
have u ≤ 2k∗α2k∗

r+1 .

Case 1: k∗ ≤ (0.5) (r2 − 1). Then, u = 2k∗α2k∗

r+1 ≤ (r−1)α2k∗ . By definition of r, (0.5)r(r−1) <
k∗, and so u < (r − 1)αr(r−1) = V (r − 1) ≤ V (d∗).

Case 2: (0.5)r2 ≤ k∗ ≤ (0.5)r(r + 1)− 1. k∗ + 1 is an integer as well as (0.5)r(r + 1). Recall
that k∗ is the maximizer of W over integers. And so we have W (k∗) > W (k∗ + 1). Since V
is single-peaked on real numbers, W (k∗) > W (k∗ + 1) implies that W (x) is decreasing for
real numbers x ∈ [k∗ + 1,∞]. In particular, W ((0.5)r(r + 1)) ≥ W ((0.5)r(r + 2)). Then we
have

W ((0.5)r(r + 1)) = r(r + 1)αr(r+1) > W ((0.5)r(r + 2)) = r(r + 2)αr(r+2)

=⇒ r + 1 > (r + 2)αr =⇒ (r + 1)α(r−1)r > (r + 2)αr2

=⇒ V (r − 1) = (r − 1)α(r−1)r >
(r − 1)(r + 2)

(r + 1) αr
2
. (7)

k∗ ≤ (0.5)r(r + 1) − 1 so u = 2k∗α2k∗

r+1 ≤ r(r+1)−2
r+1 α2k∗ . (0.5)r2 ≤ k∗ so α2k∗ ≤ αr

2 . Thus,
u ≤ r(r+1)−2

r+1 αr
2 = (r+2)(r−1)

r+1 αr
2 . By Equation (7) we have u < V (r − 1) ≤ V (d∗).
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Case 3: k∗ = (0.5)r(r+ 1). Now S is a component that has (0.5)r(r+ 1) links but it is not a
clique, so, there must be at least r + 2 firms in S. Then, u ≤ 2k∗α2k∗

r+2 < 2k∗α2k∗

r+1 = rαr(r+1) =
V (r) ≤ V (d∗).

By combining the three cases, we see that if S is not a clique, the average payoff in S is strictly
less than V (d∗). Also, the average payoff in a disjoint clique is strictly less than V (d∗) unless
the the clique is of order d∗ + 1. But a group stable network achieves an average payoff of
V (d∗). Thus the unique efficient network consists of disjoint cliques of order d∗ + 1.

Proof of Proposition 2: approximation

Proof. By single-peakedness of V , the optimal degree is given by V (d∗ − 1) ≤ V (d∗) ≥
V (d∗ + 1). The optimal degree d∗ is tied to x∗ via:

(d− 1)α(d−1)d ≤ dαd(d+ 1) ⇐⇒ 1
d+ 1 + α2(d+1) ≤ 1 ≤ 1

d
+ α2d ⇐⇒ d ≤ x∗ ≤ d+ 1

This proves that d∗ = bx∗c for α 6∈ Ã and d∗ ∈ {x∗ − 1, x∗} for α ∈ Ã. The rest of the proof
is straightforward but cluttered algebra. We omit it.

Proof of Proposition 3: group stability under correlated shocks

Proof. In any given network, if all shocks are bad, then, all firms default and if all shocks are
good, then, all firms continue. The payoff of a firm with d links is dθ or 0 respectively. Thus,
the expected payoff of each firm is dσθ. Then, it is clear that in a group stable (or pairwise
stable) network there cannot be any missing links because that would lead to a profitable
pairwise deviation. The only candidate is (d̃+ 1)-cliques which is clearly group stable.

Proof of Theorem 3: popcorn vs. dominoes

Proof. Under popcorn, for any σ ∈ (0, 1),
(
d̃+ 1

)
-cliques are formed. So, the systemic risk,

1 − σ, can take any value between 0 and 1. Under dominoes, the necessary and sufficient
condition for a complete network to be formed is, is V

(
d̃
)
≥ V

(
d̃− 1

)
. This is because V

is single-peaked. So, a complete network is formed if and only if

V
(
d̃
)

= d̃αd̃(d̃+1) ≥ V
(
d̃− 1

)
=
(
d̃− 1

)
α(d̃−1)d̃

⇐⇒ α ≥
(
d̃− 1
d̃

) 1
2d̃

⇐⇒

1−
(
d̃− 1
d̃

) d̃+1
2


n
d̃+1

≥
(

1− αd̃(d̃+1)
) n
d̃+1

.
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Proof of Proposition 4: expected payoffs

Remark: We use different symbols to denote parameters for normal and resilient firms
in order to make the equations easier to interpret. For example, if we were to take ζ = ζ ′,
the formula for pi in (2) would involve a term ζd

N
i +dMi instead of ζdNi ζ ′dMi . We find the latter

easier to understand and interpret. In fact, the only parameter difference between the two
types of firms needed for our results is that θ 6= θ′. All other parameters can be taken to be
equal: γ = γ′, β = β′, α = α′, ζ = ζ ′.

Proof. As before, a normal firm i with a good operational shock i defaults if any of its links
are bad, or any of its counterparties default. This argument can be iterated along any normal
path. Therefore, there are two ways that i can default. One is that any firm that can be
reached from i by a normal path gets a bad operational shock, and so all normal firms along
the normal path default sequentially. Second, a link of a normal firm j that can be reached
from i via a normal path is bad for j, which makes j default, and so all normal firms along
the normal path from j to i sequentially default. The first type of contagion is not triggered
by a resilient firm with probability (ζ ′)d

M
i and it does not get triggered by a normal firm with

probability ζd
N
i . The second type of contagion is not triggered with probability α2eNi +eMi .

Here eMi is not multiplied by 2 because one firm incident to this link is a resilient firm that
does not default due to link shocks. Therefore, the probability that a normal i does not
default is

pi = ζd
N
i (ζ ′)d

M
i α2eNi +eMi

and the expected payoff of i is pidiθ.

As for a resilient firm i, if i has low operational costs, i continues with all projects. This is
because θ′ > β′+ γ′ which is implied by Assumption 2. Therefore, correlations of the default
probabilities of i’s counterparties do not factor into i’s payoff. The only risk that i defaults
is that it has high operational costs. Accordingly, i’s conditional expected payoff is the sum
of its expected payoffs from each of its links. All of i’s resilient counterparties with low
operational shocks continue. Accordingly, conditional on i having low operational shocks, i
has θ′−α′γ′−ζ ′β′ expected payoff for each of its resilient counterparties. α′γ′ is the expected
loss due to the fact that the link can be bad for i. ζ ′β′ is the expected loss due to the fact
that its resilient counter-party can have high operational cost. As for a normal counter-party
of i, say j ∈ N ∩Di, the probability that j defaults conditional on j having low operational
cost is pj/ζ ′. Accordingly, conditional on i having low operational shocks, the expected loss
of i due to j’s default is pjβ′/ζ ′. Summing the expected payoffs and multiplying them by the
probability ζ ′ that i has low operational costs gives the expected payoff.
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Bilateral stability

Proposition A 3. (Case of small core) If d∗M > m, any bilaterally stable network must be a
core-periphery that satisfies the following:

1. (Core) Each resilient firm is counterparties with all resilient firms and all normal firms.

2. (Periphery) Each normal firm is counterparties with all resilient firms and some normal
firms. Excluding resilient firms and their incident links, normal firms form disjoint
cliques among themselves.

(Case of large core) If d∗M ≤ m, any bilaterally stable network must be a core-periphery that
satisfies the following:

1. (Core) Each resilient firm is counterparties with all resilient firms and some normal
firms.

2. (Periphery) Each normal firm has d∗M resilient counterparties and no normal counter-
parties.

Proof. Fix a network. A resilient firm i always wants to link with all other firms. Accordingly,
in any bilaterally stable network, all pairs of resilient firms have links. Suppose that there
exists a normal firm j that has a link with another normal firm k, but not with i. Then j
would sever its link with k, and i and j would form a link. This strictly improves i’s payoff.
As for j, pj is reduced by α2ζ by cutting the link with k and increased by ζ ′α by adding
the link with i. Since ζ ′ > ζα, pj decreases strictly. j’s degree does not change, and so j’s
payoff strictly improves. Therefore, in any bilaterally stable network, any normal firm with a
normal counter-party must be counterparties with all resilient firms. So normal firms either
have only resilient counterparties, or have resilient firms as counterparties and potentially
other normal counterparties.

Take a normal firm j that has a resilient counter-party i and a normal counter-party k. If k
is not counterparties with i, k would sever its link with j and form a link with i. This would
improve the payoffs of both i and k. So i and k must already be counterparties. That is, all
normal counterparties of i must be counterparties with all resilient firms.

Now focus on the periphery. The proof of Proposition 1 applies, and so the periphery must
be in cliques. Combine this with previous argument to see that a normal i firm is either in
a clique in the periphery where the entire clique is adjacent to all of the resilient firms, or i
does not have any normal counterparties and all of its counterparties are resilient firms.
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Consider the case of m < d∗M . Take a normal firm i. Since d (ζ ′α)d is single-peaked (due
to log-concavity) and m < d∗M , i would want to form links with more resilient firms, and
resilient firms would be happy to correspond. So in any bilaterally stable network, all normal
firms must be counterparties of with all resilient firms. The periphery must be in disjoint
cliques among themselves.

Consider the case of m > d∗M . Normal firms would like to have d∗M many counterparties and
there is sufficiently many resilient firms to form links with. Then all normal firms have d∗M
many resilient counterparties and no normal counterparties.

Proof of Theorem 4: group stability

Proof. Consider the case m < d∗M . In a group stable network, for a normal firm i, we have
dMi = m since all resilient firms can be immediately reached from i. Moreover, all normal
firms j that can be reached from i via normal firms are also counterparties with all resilient
firms, so that eMi = mdNi . Therefore, pi = ζd

N
i (ζ ′)m α2eNi +mdNi = (αmζ)d

N
i α2eNi × (ζ ′)m.

Accordingly, i’s expected payoff is

di (αmζ)d
N
i α2eNi (ζ ′)m θ.

Note that eNi is the number of links and dNi is the number of firms in the component of i in
the subnetwork of normal firms. Accordingly, one can ignore all resilient firms, focus on only
normal firms, and study group stable networks with the payoff function

U (d, e) = (d+m) (αmζ)d+1 α2e.

This payoff function is decreasing in e and so the proof of Theorem 1 can be replicated to
show the normal firms must be formed into disjoint cliques of order d∗N + 1 and be connected
to all resilient firms, and that there is no profitable deviation from this network.

Consider the case m > d∗M . Now any bilaterally stable network is group stable. Normal firms
have the maximum payoff they can achieve in any given network because they are connected
to the least risky counterparties at their individual rational level. Normal firms can not
be convinced to deviate. Clearly, the resilient firms do not want to alter their links among
themselves.

Proof of Theorem 5: efficiency
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Proof. In an efficient network it is clear that all links between resilient firms should be formed.
We now argue that each normal firm should have a link with each resilient firm. Choose any
component S in the subnetwork induced by the set of normal firms where at least one normal
firm is not linked to at least one resilient firm. Let V (S) be the set of firms in the components
S. Below we show that the total expected payoff of the firms in S is bounded above by a
constant v∗ that is independent of S and θ′.

Regardless of the rest of the network, the gain from adding an absent link between a resilient
firm and a normal firm is larger than θ′ − α′γ′ > (1 − α′)θ′ which for θ′ sufficiently large
exceeds v∗. So regardless of how much of a negative externality this link can impose on the
rest of the network, it is efficient to form this link. Therefore, the resilient firms have links
with all normal firms.

Now we argue that no two normal firms should be adjacent. Suppose, for a contradiction,
there is a link between i and j. Let 1 − pi be the default probability of i. Removing this
link can reduce i’s payoff by at most θdipi − θ(di − 1)pi/α2 < θpi − θpim(1/α2 − 1). The
payoffs of all other normal firms weakly increase, so the total loss to normal firms is at most
θ(pi + pj)(1 − m(1/α2 − 1)). The gain to resilient firms is at least mγ′(1/α2 − 1)(pi + pj)
which is larger than the loss if γ′ is sufficiently large. So there can not be any links between
normal firms.

We now establish the existence of v∗. We use equation (2). For all i, j ∈ V (S) we have
dNi = dNj = |V (S)|, dMi = dMj = dM , eNi = eNj = eN and eMi = eMj = eM . If di is the degree of
each i ∈ V (S), the sum of expected payoffs of the firms in V (S) is

∑
i∈V (S)

diθζ
|V (S)|ζ ′d

M

α2eN+eM = 2eNθζ |V (S)|ζ ′d
M

α2eN+eM .

This is bounded above by (2eN + eM)α2eN+eM . This is an expression of the form xαx which
attains a unique maximum value we call v∗. It is clearly independent of S and θ′.

Mapping the model to the microfoundation

Proposition A 4. Suppose that KiPi > Li
(
Bi − Ci − PiRi

)
> 0 and Bi > Ci for all i.

Firm i exists if it has high operational costs. Otherwise, the best response of i with low
operational costs is to either keep all projects or to drop all projects. If i drops all projects,
its payoff is 0. If i keeps all projects as a best response, its payoff is diθi − fiβi − biγi.

Proof. Firm i can have at most Li/Ki projects, each of which can generate at most Bi−Ci−
PiRi. Thus KiPi > Li

(
Bi − Ci − PiRi

)
implies that i defaults if it has a high operational
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cost. Now focus on i that has low operational cost.
Notation: For all i and for all j ∈ Di, set aij = 1 if firm i keeps project {i, j}, and aij = 0
otherwise. Denote by ai = (aij)j∈Di the strategy of i. Let a = (ai)i≤n be the action profile
played by all firms. Denote by a−i = (aj)j 6=i the action profile played by firms other than i.
Denote by 1 the vector of 1’s and 0 the vector of 0’s.

Ex-post payoffs: For X ∈ {0, 1} and Y ∈
{
C,C

}
, let

Di
X,Y (a) =

∣∣∣{j ∈ Di| aji = X,Cij = Y
}∣∣∣ .

This is the number of counterparties j of i such that the counter-party j is playing X for its
project {i, j} with i, whereas i’s management cost for the project {i, j} with j is Y . Then

(∣∣∣Di
1,C

∣∣∣+ ∣∣∣Di
1,C

∣∣∣)B +
(∣∣∣Di

0,C

∣∣∣+ ∣∣∣Di
0,C

∣∣∣)B
is the revenue of firm i. Also, diPR must be repaid back to lenders. Let

Πi (a) =
(∣∣∣Di

1,C

∣∣∣+ ∣∣∣Di
1,C

∣∣∣)B +
(∣∣∣Di

0,C

∣∣∣+ ∣∣∣Di
0,C

∣∣∣)B − diPR.
Since firms are protected by limited liability, i has profit (Πi (a))+. On top of the profit, i
incurs, the effort cost of managing projects (operational cost), is

Ci (a) =
(∣∣∣Di

1,C (a)
∣∣∣+ ∣∣∣Di

0,C (a)
∣∣∣)C +

(∣∣∣Di
0,C

∣∣∣+ ∣∣∣Di
1,C

∣∣∣)C.
Accordingly, i’s payoff is

Ui (a) = (Πi (a))+ − Ci (a) .

Ui (a) can fall below zero because the management costs of projects, C and C, are utility
costs of effort. If i continues with projects despite having very small or zero profit, Ui can be
negative.

Best responses: Define
Vi (a) = Πi (a)− Ci (a) .

By Bi > Ci, for any a−i, Vi (a′i, a−i) is increasing in a′i. In particular, for any a−i,
arg maxa′i Vi (a

′
i, a−i) = 1 is the unique maximizer.

Case 1: If Vi (1, a−i) > 0, then Πi (1, a−i) > Ci (1, a−i) > 0. So Ui (1, a−i) = Vi (1, a−i) > 0.
Consider any a′i < 1. If Πi (a) ≤ 0, then Ui (a′i, a−i) ≤ 0 < Ui (1, a−i). If Πi (a) > 0, then
Ui (a′i, a−i) = Vi (a′i, a−i) < Vi (1, a−i) = Ui (1, a−i). Thus a′i = 1 is the unique best response.

Case 2: If Vi (1, a−i) < 0, then Vi (a′i, a−i) < 0 for all a′i. Then Πi (a′i, a−i) < Ci (a′i, a−i)
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for all a′i. Also, for all a′i 6= 0, 0 < Ci (a′i, a−i). Then combining both, for all a′i 6= 0,
(Πi (a′i, a−i))

+ < Ci (a′i, a−i). So Ui (a′i, a−i) < 0 for all a′i 6= 0. Then the unique best response
is a′i = 0 since it yields Ui (0, a−i) = 0.

Case 3: If Vi (1, a−i) = 0, then Vi (a′i, a−i) < 0 for all a′i 6= 1. Similar to Case 2, we get
Ui (a′i, a−i) < 0 for all a′i 6= 0,1. For a′i = 0, Ui (0, a−i) = 0. For a′i = 1, by Vi (1, a−i) = 0, we
have Πi (1, a−i) = Ci (1, a−i) > 0. So Ui (1, a−i) = Vi (1, a−i) = 0. Then both a′i ∈ {0,1} are
the best responses.

This establishes that the best response is either to keep all projects (a′i = 1 when Vi (1, a−i) ≥
0) or to drop all projects (a′i = 0 when Vi (1, a−i) ≤ 0). Observe that

Vi (1, a−i) =
(∣∣∣Di

1,C (1, a−i)
∣∣∣+ ∣∣∣Di

1,C (1, a−i)
∣∣∣)B+

(∣∣∣Di
0,C (1, a−i)

∣∣∣+ ∣∣∣Di
0,C (1, a−i)

∣∣∣)B−diPR
−
((∣∣∣Di

1,C (1, a−i)
∣∣∣+ ∣∣∣Di

0,C (1, a−i)
∣∣∣)C +

(∣∣∣Di
0,C (1, a−i)

∣∣∣+ ∣∣∣Di
1,C (1, a−i)

∣∣∣)C)
= d

(
B − C − P

)
−
(∣∣∣Di

0,C (1, a−i)
∣∣∣+ ∣∣∣Di

0,C (1, a−i)
∣∣∣) (B −B)

−
(∣∣∣Di

1,C (1, a−i)
∣∣∣+ ∣∣∣Di

0,C (1, a−i)
∣∣∣) (C − C)

= diθ − fiβ − biγ.

Proposition A 5. Suppose that KiPi > Li
(
Bi − Ci − PiRi

)
> 0 for all i. Call i a high-rate

firm if

0 < Li

(
Bi − Ci

Pi
−Ri

)
< min

{(
Bi −Bi

)
,
(
Ci − Ci

)}
.

and a low-rate firm if
Bi − Ci > PiRi

The following hold:
• Consider n identical high-rate firms. Also take ζ = 1. Then microfoundation is equiv-
alent to the model of periphery in Section 2.

• Consider n identical high-rate firms and m identical low-rate firms. Also ζi > ζjαj for
all low-rate i and all high rate j. Then, the microfoundation is equivalent to the model
of core-periphery in Section 3.

Proof. KiPi > Li
(
Bi − Ci − PiRi

)
implies that i defaults if it has bad node shock (high

operational cost).

Bi − Ci − PiRi > 0 implies that θi > βi + γi. So, low rate firms in the micro-foundation are
resilient firms in the reduced form model.
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Bi−Ci
Pi
−Ri > 0 implies θi > 0. On the other hand,

Li

(
Bi − Ci

Pi
−Ri

)
< min

{(
Bi −Bi

)
,
(
Ci − Ci

)}

implies Li
Pi
θi < min{βi, γi}, which implies d̃iθi < min{βi, γi}. Thus, high rate firms are normal

firms in the reduced form model.

When all firms are high rate and ζi = 1, the microfoundation boils down to n normal firms
without node shocks, which is the model in Section 2. ζi > ζjαj for all low rate i and high
rate j corresponds to Assumption 3. Then, the model with n high rate and m low rate firms
corresponds to the model in Section 3.

Proof of Theorem 6: existence of core-periphery with ex-ante identical agents

Proof. Under interest rates ζ−1 and ζ−1 (αζ)−b
1

1−αζc, Assumption M1-3 imply the conditions
of Proposition A5. Then, by Theorem 4, the network formed is group stable.

In particular, d∗M = arg max d (αζ)d =
⌊

1
1−αζ

⌋
< m. Since d∗M < m, d∗N = 0. (The network is

given by the case of the large core in Theorem 4.) Then, the default probability of a firm in
the periphery is 1− ζ (αζ)b

1
1−αζc. The default probability of a firm in the core is 1− ζ. Then,

the interest rate that makes lenders of periphery firms indifferent is ζ−1 (αζ)−b
1

1−αζc = R.
The interest rate that makes lenders of the core firms indifferent is ζ−1 = R′.

Analysis of other core-periphery equilibria with ex-ante identical agents

Let R = B−C
P

and R = R− min{B−B,C−C}
L

.

Definition 1. An equilibrium is called a core-periphery equilibrium if one group of firms
(called the core) faces interest rate ζ−1 and the other group (the periphery) faces an interest
rate between R and R.

For given R and m, a core-periphery equilibrium is called an (R, m)-equilibrium if the
interest rate for the periphery is R and the size of the core is m.

So as not to be distracted by extraneous details caused by integrality requirements we focus
on values of α and ζ for which these requirements are moot. For a given m, denote by
x∗M(m,α, ζ) ∈ R the solution to maxxM∈[0,m] xM(αζ)xM and denote by x∗N(m,α, ζ) ∈ R the
solution to maxxN≥0(m + xN)ζmα(m+xN )(xN+1). Here x∗M and x∗N are ‘smooth’ counterparts
of d∗M and d∗N . Let Ω = {(m,α, ζ)|x∗M(m,α, ζ), x∗N(m,α, ζ) ∈ Z}. By focusing on values in Ω
we need not worry about discrete jumps.
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Theorem A 1. (Characterization) Suppose that Assumption M1 and 2 hold. Focus on values
in Ω. Fix α, ζ and drop them from notation for simplicity.

For any (R,m)-equilibrium with R ∈ [R,R], the periphery has x∗M(m) links with the core and
x∗N(m) links with the periphery. The interest rate R satisfies

R−1 = ζ
(
ζαx

∗
N (m)+1

)x∗M (m)+x∗N (m)
.

If R > ζ−1e, there is no (R,m)-equilibrium for any m.

Denote by m the positive solution to 1 +m ln(αζ) +m2 ln(α) = 0 and m the positive solution
to 1 +m ln(αζ) = 0.

If R = ζ−1e, there is an (R,m)-equilibrium if and only if m > m. For an (R,m) equilibrium,
x∗M(m) = m and x∗N(m) = 0. (R,m) equilibria with higher m are more efficient provided that
ζ > (e− 1)−1.

If ζ−1e (αζ)
√

1− 4 ln(α)
(ln(αζ))2 ≤ R < ζ−1e, there exists m1(R), m2(R) with m1(R) ≤ m ≤ m2(R) ≤

m such that there exists an (R,m)-equilibrium if and only if m ∈ {m1(R),m2(R)}. For these,
we have x∗M(m1(R)) = m1(R), x∗N(m1(R)) > 0, and x∗M(m2(R)) = m2(R), x∗N(m2(R)) = 0.
(R,m2(R))-equilibrium is more efficient than (R,m1(R))-equilibrium.21 m1 is increasing and
m2 is decreasing. Under large enough k, (m−1

i (m),m) equilibrium is more efficient for larger
m.

If R < ζ−1e (αζ)
√

1− 4 ln(α)
(ln(αζ))2 , there is no (R,m)-equilibrium for any m.

(R,m)-equilibria under R = ζ−1e necessitates m > m. Accordingly we call these large-core
equilibria.22 (R,m)-equilibria under R < ζ−1e have core size m1(R) or m2(R). Recall that
m1(R) ≤ m ≤ m2(R) ≤ m. Accordingly, we call (R,m2(R))-equilibria the medium-core
equilibria and (R,m1(R))-equilibria the small-core equilibria.

Proof. First, note that (R,m)-equilibria constitute a partition of core-periphery equilibria
Notice that each core-periphery equilibrium is an (R,m)-equilibrium for the corresponding
R and m.

Assumption M1 and 2, and R ∈ [R,R] imply the conditions of Proposition A5. Then, by
Proposition A5, (R,m)-equilibrium networks in are characterized by networks in Theorem

21m1(R) = m2(R) only at R = ζ−1e (αζ)

√
1− 4 ln(α)

(ln(αζ))2

22Note that for values in Ω, we have ζ−1 (αζ)−b
1

1−αζ c = ζ−1e so that Theorem A1 implies Theorem 6 on
Ω.
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4 which involve interest rate R for the periphery firms. In particular, periphery firms have
x∗M(m) core counterparties, x∗N(m) periphery counterparties, and the periphery is organized
into cliques of order x∗N(m) + 1. This makes the continuation probability of a periphery firm
ζ
(
ζαx

∗
N (m)+1

)x∗M (m)+x∗N (m)
which is R−1.

Some algebra shows that following hold. If m ≤ m (large-core case), then x∗M(m) = m and
x∗N(m) = 0. In this case, R−1 = ζ(αζ)m = ζe−1. If m ≤ m < m (medium-core case), then
x∗M(m) = m and x∗N(m) = 0. In this case, R−1 = ζ(ζα)m > ζ(ζα)m = ζe−1. Ifm < m (small-
core case), then x∗M(m) = m and x∗N(m) > 0. In this case, R−1 = ζ(ζαx∗N (m)+1)m+x∗N (m) =
ζe−1α−(x∗N (m)+m)2

> ζe−1. (The last equality follows from the definition of x∗N(m) and the
FOC therein.)

Using these we immediately see that if R > ζ−1e, there is no (R,m)-equilibrium for any m.
If R = ζ−1e, there is an (R,m)-equilibrium if and only if m > m. In this case the sum of
payoffs of all firms is

m(m−1)ζ (θc − (1− α)γ − (1− ζ)β) +m(k−m)
(
ζ
(
θc − (1− α)γ − (1−R−1)β

)
+R−1θp

)
where θc = B − C − Pζ−1 and θp = B − C − PR. Using θc > β + γ, θp < β, R = ζ−1e,
m > m, m ≥ 1, some algebra yields that the sum of payoff is increasing in m if ζ > (e− 1)−1

For ζ−1e (αζ)
√

1− 4 ln(α)
(ln(αζ))2

< R < ζ−1e, there are two solutions: one from the medium-core
case and one from the small-core case. The solution from the medium-core case is m2(R)
that solves R−1 = ζ(αζ)m2(R), i.e., m2(R) = ln(Rζ)

− ln(αζ) . The solution from the small core case is
m1(R) that solves R−1 = ζ(ζαx∗N (m1(R))+1)m1(R)+x∗N (m1(R)).

ζ(αζ)m2(R) = ζ(ζαx∗N (m1(R))+1)m1(R)+x∗N (m1(R))

implies that m2(R) ≥ m1(R) + x∗N(m1(R)). Under m1, the payoff of a periphery firm is
up,1 = (m1 + x∗N(m1))R−1θp. Under m2, it is up,2 = m2R

−1θp > up,1. Under mi, the payoff of
a core firm is

uc,i = (mi − 1)ζ (θc − (1− α)γ − (1− ζ)β) + (k −mi)ζ
(
θc − (1− α)γ − (1−R−1)β

)
which is partially increasing in mi. So the core firms are better off under m2. Clearly the core
firms are better off than the periphery firms. Therefore, uc,2 > up,2, uc,1 > up,1, uc,2 > uc,1,
up,2 > up,1. Then by m2 > m1, we find that m2 is more efficient than m1.

It is easy to show that m1 is increasing and m2 is decreasing in R.

As for sum of payoffs w.r.t. m, for large k and m = m2(R),
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up,2 = mζ(ζα)mθp
d

∑
up,2
k

dm
≈ d

dm
mζ(ζα)mθp > 0 (because m < m)

uc,2 = (m− 1)ζ (θc − (1− α)γ − (1− ζ)β) + (k −m)ζ (θc − (1− α)γ − (1− ζ(ζα)m)β)
d

∑
uc

k

dm
≈ d

dm
mζ (θc − (1− α)γ − (1− ζ(ζα)m)β) = ζ

(
θc − (1− α)γ − β + ζβ d

dm
m(ζα)m

)
> 0

For large k and m = m1(R),

up,1 = dmζe
−1α−d

2
m

(where dm = m+ x∗N(m), which is increasing in m)
d

∑
up,1
k

dm
≈ d

dm
up,1 > 0

uc,1 = (m− 1)ζ (θc − (1− α)γ − (1− ζ)β)
+(k −m)ζ

(
θc − (1− α)γ − (1− ζe−1α−d

2
m)β

)
d

∑
uc,1
k

dm
≈ d

dm
∂mζ

(
θc − (1− α)γ − (1− ζe−1α−d

2
m)β

)
> 0

At R = ζ−1e (αζ)
√

1− 4 ln(α)
(ln(αζ))2 , the unconstraint x∗N(m) is equal to 0. This is the point at

which m1(R) = m2(R). Below this R there is no equilibrium.
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Appendix B Supplementary Material

B.1 Other measures of systemic risk

As stated in Section 2.3, our insights are valid under other measures of systemic risk as well.
Here we formalize this. Given α, the number of defaults is equal to (d∗+1)s with probability

 n
d∗+1

s

(1− αd∗(d∗+1)
)s (

αd
∗(d∗+1)

) n
d∗+1−s . (8)

There is no first order stochastic dominance order among these distributions indexed by
α. However, the distributions with larger α’s second order stochastically dominate those
with smaller α’s. Approximately, s (−2 log[α]) firms default out of n, with probability
F
[
s,
⌊
n
√
−2 log[α]

⌋
, 1− e−0.5

]
, where F is the binomial pdf.

The mean and variance of the number of defaults are given by

µdefaults
n

=
(
1− αd∗(d∗+1)

)
≈
(
1− e−0.5

)
,

σ2
defaults

n
= (d∗ + 1)

(
1− αd∗(d∗+1)

) (
αd
∗(d∗+1)

)
≈ (−2 log[α])−0.5

(
1− e−0.5

)
e−0.5.

Except for the discreteness, the mean is arguably constant but the variance gets larger in α.
Increasing variance is due to the fact that firms in components have correlated risk and the
components are getting larger in α. Figure 4 shows how the mean and variance vary with α.

There are other measures of systemic risk besides the probability that all firms default. Figure
5 shows the probability that at least 90% of firms default and the probability that at least
50% of firms default. These measures of systemic risk also increase in α, meaning that our
insight regarding the volatility paradox is not specific to the notion of systemic risk defined
as the probability of all firms defaulting.

Despite the constant mean and increasing volatility in the number of defaults, mean welfare
increases in α. The sum off payoffs is nd∗αd∗(d∗+1) which is clearly increasing in α by definition
of d∗ being the maximizer of V (d). The distribution of welfare can also be pinned down.
Realized ex-post welfare is (n− (d∗ + 1)k) d∗θ with probability given in Equation (8). Hence
welfare has mean and variance given by

µwelfare
n

= d∗αd
∗(d∗+1)θ ≈ e−0.5 (−2log[α])−1 θ,
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σ2
welfare

n
= (d∗ + 1) (d∗)2 θ2

(
1− αd∗(d∗+1)

) (
αd
∗(d∗+1)

)
≈ (−2log[α])−1.5

(
1− e−0.5

)
e−0.5θ2.

Both means and variance are increasing in α. These are plotted in Figure 6. The volatility
paradox holds for welfare as well: welfare has higher mean and higher variance in fundamen-
tally safer economies.

B.2 Robustness: Stability and volatility paradox

We relax Assumption 1 and check for the robustness of volatility paradox. We start with
stability of the clique structure. We consider networks that consist of disjoint cliques of order
d∗, which is defined as the degree that maximizes the average payoff of firms in the clique.

Unfortunately, we are unable to do this for any set of parameters. We maintain the assump-
tion γ > d̃θ. That is, one bad shock causes the firm to default, but we relax β > d̃θ, so that
a nontrivial number of counterparty defaults can cause a firm to default. For example, for
θ = 1 and β = 2, a firm with good shocks defaults only if more than half its counterparties
default. Accordingly, in a disjoint clique, if more than half the firms suffer bad shocks, all
firms default.

In this case, the payoff of a firm in a (d+ 1)-clique is not dαd(d+1)θ anymore. Denote by
Pbin and Fbinthe binomial PDF and CDF. The expected payoff of a firm in a (d+ 1)-clique
becomes

V (d) = αd ×
b dθβ c∑
f=0

Pbin
[
f ; d, 1− αd

]
(dθ − βf)

= dαd ×
{
θFbin

[⌊
dθ

β

⌋
; d, 1− αd

]
− β

(
1− αd

)
Fbin

[⌊
dθ

β

⌋
− 1; d− 1, 1− αd

]}
. (9)

Proposition A 6. Suppose that α2 + θ
β
< 1. Then, a network that consists of cliques of

order d∗ + 1 is bilaterally stable.

The proof is given at the end of the section.

Next we consider the volatility paradox. Absent a closed-form expression for d∗ we resort to
simulations for comparative statics. Consider θ = 1 and β = 1.5. d∗ increases in α. Figure
11 plots the corresponding systemic risk. Systemic risk increases as the probability of good
shock α increases, even under mild network externalities. Therefore, the volatility paradox
is not just a consequence of Assumption 1.
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Figure 11: Peripheral volatility paradox persists under weaker contagion: θ = 1, β = 1.5

In order to reinforce our argument, consider β < 1. Then, there is no contagion and the only
risk that a firm faces is the immediate shocks to its links. A firm’s payoff is dαdθ. Note that
arg max dαd =

⌊
1

1−α

⌋
, which is approximately (− ln (α))−1 for large α. The default risk of a

firm is approximately 1− e−1. Systemic risk is (1− e−1)n, which is constant.

These illustrate that in our model the volatility paradox arises due to network externalities.
If there is no contagion, there is no volatility paradox.

Similarly for the core-periphery, we argue that central-volatility paradox is a consequence of
contagion, not parametric assumptions. We focus on the large core case (m is sufficiently
large) in order to single out the central volatility paradox. Consider a network that consists
of singletons in the periphery, such that each peripheral firm has links with d many core firms
out of m. The expected payoff of a peripheral firm is

V (d) = αdζ ×
b dθβ c∑
f=0

Pbin [f ; d, 1− ζ] (dθ − βf)

= dαdζθ ×
{
Fbin

[⌊
dθ

β

⌋
; d, 1− ζ ′

]
− β (1− ζ ′)

θ
Fbin

[⌊
dθ

β

⌋
− 1; d− 1, 1− ζ ′

]}
. (10)

This is a simpler functional form than equation (9). In equation (9), each counter-party
carries a risk of default given by 1 − αd, which is endogenously determined by d. Here in
equation (10), counterparties are resilient core firms, so counter-party default risk is given by
1− ζ ′. As there is no closed-form expression for d∗ even in this case, we provide simulations
in Figure 12. Firms naturally form more links for larger α and d∗ increases. What is
striking is that even under weak contagion (small β), even without any cliques (large m and
singletons within the periphery), even without any endogenous counter-party risk (1 − ζ ′

term in equation (10) instead of the 1− αd term in equation (9)), the increase in the degree
d∗ offsets the gain from risk 1− α, and systemic risk increases as α increases. Mild network
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externalities generate the volatility paradox in the core-periphery case as well.
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Figure 12: Central volatility paradox persists under weak contagion, θ = 1, β = 2.

Proof of Proposition A6

Proof. Let F and G denote the binomial PDF and CDF. Denote θ̃ = θ
β
. From equation (9)

we know that
V (d) = β

t=d∑
t=0

F[t, d, 1− αd]
(
dθ̃ − t

)+

is the payoff of a firm in a clique with d+ 1 firms. If two firms in a clique of order d∗+ 1 cut
a link, their payoff becomes

β
t=d−1∑
t=0

F
[
t, d− 1, 1− αd

] (
dθ̃ − θ̃ − t

)+
< V (d∗ − 1) < V (d∗).

This cannot be profitable. If two firms in separate cliques of order d + 1 add their missing
link, their payoff becomes

W (d) = β
t=d∑
t=0

F
[
t, d, 1− αd

] (
q(d)

(
dθ̃ + θ̃ − t

)+
+ (1− q(d)

(
dθ̃ + θ̃ − t− 1

)+
)

where

q(d) =

α
d+1G

[
dθ̃, d, 1− αd

]
if (d+ 1)θ̃ < d

αd+1 if (d+ 1)θ̃ ≥ d

We need to show that V (d∗) ≥ W (d∗).

For economy of exposition, in the remainder of the proof, we use Gt for G
[
t, d∗, 1− αd∗

]
, Ft

for F
[
t, d∗, 1− αd∗

]
, q∗ for q(d∗), m for bd∗θ̃c, s for bd∗θ̃ + θ̃c.

Case 1: m = s.
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W (d∗)
αV (d∗) =

∑t=d∗
t=0 Ft

(
q∗
(
d∗θ̃ + θ̃ − t

)+
+ (1− q∗)

(
d∗θ̃ + θ̃ − t− 1

)+
)

∑t=d∗
t=0 Ft

(
d∗θ̃ − t

)+

=
∑t=m−1
t=0 Ft

[(
d∗θ̃ + θ̃ − t

)
− (1− q∗)

]
+ Fmq∗(d∗θ̃ + θ̃ −m)∑t=m

t=0 Ft
(
d∗θ̃ − t

)

=
∑t=m
t=0 Ft

(
d∗θ̃ − t

)
− Fm(d∗θ̃ −m) + Gm−1(θ̃ + q∗ − 1) + Fmq∗(d∗θ̃ + θ̃ −m)∑t=m

t=0 Ft
(
d∗θ̃ − t

)

= 1 +
Gm−1(θ̃ + q∗ − 1) + Fm

(
q∗θ̃ − (d∗θ̃ −m)(1− q∗)

)
∑t=m
t=0 Ft

(
d∗θ̃ − t

) .

If the numerator is negative, we are done. If it is positive:

W (d∗)
αV (d∗) ≤ 1 +

Gm−1(θ̃ + q∗ − 1) + Fm
(
q∗θ̃ − (d∗θ̃ −m)(1− q∗)

)
Gm−1

= 1 + θ̃ + q∗ − 1 +
Fm

(
q∗θ̃ − (d∗θ̃ −m)(1− q∗)

)
Gm−1

≤ θ̃ + q∗ +
Fm

(
q∗θ̃ − (d∗θ̃ −m)(1− q∗)

)
Fm−1

= θ̃ + q∗ + d∗ + 1−m
m

× 1− αd∗

αd∗
×
(
q∗θ̃ − (d∗θ̃ −m)(1− q∗)

)
.

Define ε = d∗θ̃ −m.

W (d∗)
αV (d∗) ≤ θ̃ + q∗ +

(
d∗ + 1
d∗θ̃ − ε

− 1
)
× 1− αd∗

αd∗
×
(
q∗θ̃ − ε(1− q∗)

)
.

Consider the function Φ of ε keeping all else fixed:

Φ(ε) =
(
d∗ + 1
d∗θ̃ − ε

− 1
)(

q∗θ̃ − ε(1− q∗)
)
.

Φ′(ε) = (d∗ + 1)q∗θ̃ −1
(d∗θ̃ − ε)2

− (d∗ + 1)(1− q∗) d∗θ̃

(d∗θ̃ − ε)2
+ (1− q∗)
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< (d∗ + 1)q∗θ̃ −1
(d∗θ̃ − ε)2

− (1− q∗) + (1− q∗) < 0.

So Φ(ε) is decreasing and maxed at ε = 0. That is,

d∗ + 1−m
m

×
(
q∗θ̃ − (d∗θ̃ −m)(1− q∗)

)
<
d∗ + 1
d∗θ̃

×
(
q∗θ̃ − ε(1− q∗)

)
and

W (d∗)
αV (d∗) ≤ θ̃+ q∗+

(
d∗ + 1
d∗θ̃

− 1
)
× 1− αd∗

αd∗
× q∗θ̃ = θ̃+ q∗+

(
1− θ̃ + 1

d∗

)
×
(

1− αd∗

αd∗

)
× q∗.

Case 1.1: d∗θ̃ ≥ 1. In this case, 1− θ̃ + 1
d∗
≤ 1 so that

W (d∗)
αV (d∗) ≤ θ̃ + q∗ +

( 1
αd∗
− 1

)
× q∗ = θ̃ + q∗

αd∗
≤ θ̃ + α ≤ 1

α
.

Case 1.2: d∗θ̃ < 1. Then m = s = 0. Since s = 0, (d∗ + 1)θ̃ < 1. Optimal d∗ can’t be zero,
so (d∗ + 1)θ̃ < 1 ≤ d∗, hence q(d∗) = αd

∗+1Gm = αd
∗+1G0 = αd

∗+1F0 = αd
∗+1+(d∗)2 . Then

W (d∗) = βαd
∗+1F0q

∗(d∗θ̃ + θ̃) = βα2d∗+2+2(d∗)2(d∗θ̃ + θ̃). On the other hand V (d∗ + 1) =
βαd

∗+1+(d∗+1)2(d∗θ̃ + θ̃). Since d∗ ≥ 1, we have 2d∗ + 2 + 2 (d∗)2 ≥ d∗ + 1 + (d∗ + 1)2 so that
V (d∗ + 1) ≥ W (d∗), which implies V (d∗) ≥ W (d∗).

Case 2: m = s− 1.

Case 2.1: (d∗ + 1)θ̃ < d∗.

V (d∗)
βαd∗

−W (d∗)
βαd∗+1 =

t=d∗∑
t=0

Ft
(
d∗θ̃ − t

)+
−
[
t=d∗∑
t=0

Ft
(
q∗
(
d∗θ̃ + θ̃ − t

)+
+ (1− q∗)

(
d∗θ̃ + θ̃ − t− 1

)+
)]

=
t=m∑
t=0

Ft
(
d∗θ̃ − t

)
−
[
t=s−1=m∑

t=0
Ft
(
d∗θ̃ + θ̃ − t− 1 + q∗

)
+ Fsq∗(d∗θ̃ + θ̃ − s)

]

= Gm(1− θ̃ − q∗)− Fm+1q
∗(d∗θ̃ + θ̃ − s).

d∗θ̃ < m + 1 = s so d∗θ̃ + θ̃ − s < θ̃. Also (d∗ + 1)θ̃ < d∗, so that q(d∗) = αd
∗+1Gm. Also

Fm+1 < 1−Gm. Plug all these in:

V (d∗)
βαd∗

− W (d∗)
βαd∗+1 > Gm

(
1− θ̃ − αd∗+1Gm − (1−Gm)αd∗+1θ̃

)
.
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> Gm

(
1− θ̃ − αd∗+1Gm(1− θ̃)− αd∗+1θ̃

)
> Gm

(
1− θ̃ − αd∗+1(1− θ̃)− αd∗+1θ̃

)
= Gm

(
1− θ̃ − αd∗+1

)
≥ 0.

That is V (d∗) > 1
α
W (d∗) > W (d∗).

Case 2.2: (d∗ + 1)θ̃ ≥ d∗. Then s = d∗, so that m = d∗ − 1. Note that (d∗ + 1)θ̃ ≥ θ̃ implies
(d∗ + 1)α2 ≤ 1.

Case 2.2.1: If d∗ ≥ 3, then

W (d∗) < βαd
∗+1(d∗θ̃ + θ̃) ≤ βα4(d∗ + 1)θ̃ ≤ βα2θ̃ = V (1) ≤ V (d∗).

Case 2.2.2: If d∗ = 2, then s = 2 so θ̃ > 2
3 >

1
2 . Then

V (2)
βα2 = α42θ̃ + 2α2(1− α2)(2θ̃ − 1)

= 2θ̃
[
2α2 − α4

]
− 2α2

(
1− α2

)
< 2θ̃

[
2α2 − α4

]
− 2α2θ̃

= 2θ̃
[
α2 − α4

]
<
θ̃

2 < θ̃ = V (1)
βα2

which is a contradiction. d∗ = 2 is not possible in this case.

Case 2.2.3: If d∗ = 1, then s = 1 and θ̃ > 1
2 .

W (1)
βα2 = α

(
α22θ̃ + (1− α2)(2θ̃ − 1)

)
+ (1− α)

(
α2(2θ̃ − 1)

)

= 2θ̃
[
α + α2 − α3

]
−
[
α + α2 − 2α3

]
.

V (1)−W (1)
βα2 = 2θ̃

[1
2 − α− α

2 + α3
]

+
[
α + α2 − 2α3

]
.

If the term in the first bracket is positive, we are done. If it is negative, then replace insert
θ̃ < 1− α2.

V (1)−W (1)
βα2 > 2

(
1− α2

) [1
2 − α− α

2 + α3
]

+
[
α + α2 − 2α3

]

= (1− α)
(
1− α2

)
≥ 0.

54



B.3 Node shocks and systemic risk

As mentioned in Section 3.3, changing the probability of good node shocks, ζ and ζ ′, impacts
the network as well. The comparative statics in ζ and ζ ′ are less interesting and the effects
are summarized in Table 2. The only interesting case is when ζ increases for large core (large
α). Then, systemic risk has an inverse U-shape displayed in Figure 13. The reason that
systemic risk initially increases is similar to the the peripheral volatility paradox introduced
in Section 2.3. The reason systemic risk starts to decline after a threshold of ζ is that the
risk of link shocks 1− α imposes an upper bound on the number links that peripheral firms
want to form no matter how large ζ can be. Accordingly, when the periphery reaches this
“satiation” point, the cliques do not expand any further and systemic risk stars falling as ζ
increases.

Systemic w.r.t.: ζ (periphery node-shock) ζ ′ (core node-shock)
risk source: Central Peripheral Combined Central Peripheral Combined

d∗ ≤ m / small α Constant Decr. Decr. Decr. Incr. Decr.
d∗ > m / large α Constant Inverse-U Inverse-U Decr. Constant Decr.

Table 2: Central and peripheral systemic risk in node shock risk
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Probability of a good shock ζ

Figure 13: Volatility paradox with respect to the probability of a good node shock for the
periphery
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