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Abstract

This paper studies a model of firms with endogenous bilateral expo-
sures and government bailouts. It is shown that the anticipation of
bailouts makes firms less concerned with the counterparty choices of
their counterparties. This “network hazard” gives rise to large central
firms. Bailouts can mitigate contagion but they can not restore output
losses. Consequently, idiosyncratic bad shocks to large central firms
generate large welfare losses. As such, bailouts create welfare volatility
and systemic risk. Surprisingly, moral hazard on risk-return dimension
is mitigated by bailouts. Ex-ante regulations can induce discontinuous
changes in the network.
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1 Introduction
The financial crisis of 2008 raised awareness about dangers of systemic risk:
the risk that the failure of a few individual firms might, through the inter-
connectedness of the system, damage the economy as a whole. The structure
of the network and shocks are essential for the patterns of contagion (see
Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a), Elliott, Golub and Jackson
(2014), Anderson, Paddrik and Wang (2018a)). However, most economic net-
works are formed endogenously by firms who take the possibility of contagion
into account while forming interconnections (see Erol and Vohra (2018), El-
liott, Hazell and Georg (2018)). Furthermore, the inability of governments to
commit to not intervene suggests that an ex-post response to systemic risk, in
the form of bailouts, is unavoidable.1 This paper studies how the anticipation
of bailouts affect the network structure and systemic risk in the presence of
contagion.

In an interconnected context, bailouts meant to mitigate systemic risk ben-
efit not only the bailout recipients, but also direct or indirect counterparties
of bailout recipients. For example, Ford’s CEO Alan Mulally pleaded for a
bailout of Ford’s arch-rival General Motors in his testimony before the Sen-
ate Banking Committee in 2008, arguing about the risks of contagion through
common suppliers of Ford and General Motors.2 Similar channels are relevant
in the context of financial networks. Until November 2009, Goldman Sachs,
UBS, Deutsche Bank, Societe Generale and Merrill Lynch received $62 billion
as a result of AIG’s bailout.3,4 Bailouts of failing firms are often criticized
because they encourage excessive risk taking by firms that expect to be bailed
out. Indeed, much of the literature has focused on moral hazard in individual
investment choices. In this paper, we study the network effects of interventions
and regulations. In particular, in an interconnected system where firms ben-

1See, for example, "The Ripple Effect: Why Failure of the Big Three is not an Option",
report by Representative Carolyn B. Maloney, Dec. 2008.

2Senate Hearing, Committee on Banking, Housing, and Urban Affairs, Nov. 18, 2008.
3"Did Goldman Benefit The Most From AIG Bailout?" by Liz Moyer, Forbes, Jan. 2010.
4"In U.S. Bailout of A.I.G., Forgiveness for Big Banks" by Louise Story and Gretchen

Morgensen, NY Times, June 2010.
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efit from the bailouts of their trading partners, how does the anticipation of
bailouts shape the counterparty choices of firms that anticipate such bailouts?

We provide three insights. First, the anticipation of bailouts makes firms
less concerned with the counterparty choices of their counterparties. We call
this new channel “network hazard.” Network hazard makes the endogenous
network more interconnected and more concentrated. As a result, there is
higher systemic risk as well as higher welfare volatility and output volatility
in the presence of interventions compared to the absence of interventions.
Second, despite network hazard, surprisingly, individual moral hazard on the
risk-return dimension is mitigated by bailouts. Finally, tightening ex-ante
regulations such as higher capital requirements can trigger abrupt changes in
the network structure and discontinuous drops in welfare past a tipping-point.

In the model, firms with existing investments and existing liabilities to external
creditors decide to make joint investments. Then firms receive shocks that
determine the return on their investments. Firms with bad shocks (bad firms)
suffer large losses to their returns, and so they can not repay their external
creditors and default. For each firm, joint investments with defaulting firms
lead to reduced yields. Accordingly, firms with good shocks (good firms) which
have sizable counterparty defaults might become unable to repay external
creditors and default. Defaults then cascade. In order to prevent inefficient
losses in investments, the government can choose to make targeted capital
injections to enable firms to repay their liabilities.

In the absence of interventions, there are two forces at play during network
formation. A firm can suffer losses due to its bad counterparties. Call this
“first-order counterparty risk.” A firm can also suffer losses due to defaults
of its good counterparties who are defaulting due to their own bad counter-
parties. Call this the “second-order counterparty risk.” Consider a pair of
firms who are counterparties. If each have other counterparties that are not
counterparties of the other, each firm in the pair is exposed to second-order
counterparty risk through the other. Instead of each firm in the pair hav-
ing a distinct counterparty, they can have one common counterparty in order
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to mitigate second-order counterparty risk through each other. This force
pushes counterparties towards having common counterparties, and results in
high clustering in the network. The second force is the tradeoff between the
first-order counterparty risk and the second-order counterparty risk. Suppose
that there is a firm that faces a small exogenous risk of a bad shock and has
a large credit line to borrow and make investments. Call this the large firm
and the others small firms. All else fixed, a small firm would prefer to become
a counterparty with the large firm instead of a small firm in order to reduce
its own first-order counterparty risk. Nevertheless, if the large firm has an
excessively large number of counterparties, it can transmit contagion and cre-
ate high second-order counterparty risk for its counterparties. This tradeoff
limits small firms’ willingness to expose themselves to the large firm in case
the large firm is highly exposed to other small firms. As a result, (assuming
that the large firm is willing to form a large number of links,) only a limited
number of small firms choose to become counterparties with the large firm –
the network features only a limited amount of concentration of links around
the large firm. Therefore, the network formed in the absence of intervention
features high clustering and low concentration.

In the presence of interventions, the sizes of bad shocks determine the structure
of optimal interventions. If bad shocks are large (such that the net ex-post
returns to investments of bad firms are negative) it is optimal for the gov-
ernment to let bad firms default because their projects are not worth saving.
However, good firms have potential high returns to their investments, which
justifies their bailout in case they face default. Contagion is stopped by inter-
ventions after the initial defaults by bad firms. Since bad firms default and
good firms do not as a consequence of optimal interventions, first-order coun-
terparty risk is not altered but second-order counterparty risk is eliminated.
On the other hand, if the bad shocks are small, it is optimal to bailout bad
firms because their investments are also worth saving. Contagion is stopped
immediately by saving bad firms. Then good firms do not need bailouts. In
this case, first-order counterparty risk is eliminated by interventions, which
also eliminates second-order counterparty risk. In either case of the shocks,
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second-order counterparty risk is eliminated. Then, during network formation,
both forces outlined earlier become irrelevant. Second-order counterparty risk
is eliminated and so there is no need for high clustering. There is no longer a
tradeoff between first- and second-order counterparty risks, which makes the
large firm obtain a very large number of counterparties. The network features
low clustering and high concentration due to the anticipation of bailouts.

This may sound like contagion becomes irrelevant under interventions and that
there are no negative effects of the induced network structure. Nevertheless,
the large firm, which is now highly interconnected to small firms due to the
presence of interventions, can still receive a bad shock. When the large firm
gets a bad shock, regardless of whether it receives a bailout or not, the returns
to its investments suffer losses. A bailout would reduce further losses from a
potential default the large firm, but not eliminate the losses resulting from the
bad shock in the first place. Now that the large firm has many investments
under interventions, a bad shock to the large firm causes large ex-post welfare
losses. Such a bad shock prompts either widespread interventions to the good
counterparties of the large firm, or a large and direct intervention to the large
firm. The defaults of good firms are prevented with interventions, directly
or indirectly, but the welfare and output losses due to the bad shock to the
large firm is permanent. Therefore, the performance of a large number of
investments and firms become highly correlated through the idiosyncratic risk
of the large firm. Welfare volatility, output volatility, and systemic risk are
higher in the presence of interventions than in the absence of interventions.
We call these adverse effects of bailouts, via the elimination of first- or second-
order counterparty risk, “network hazard.” Nevertheless, average welfare is
higher in the presence of interventions.

We also consider how the anticipation of bailouts interacts with other forms
of moral hazard. Suppose that the large firm can choose between two risk-
return profiles before network formation: the risky profile or the safer profile.
Suppose that this choice can be observed by the firms in the network but not
by the external creditors of firms. In this case, the large firm can potentially
engage in individual moral hazard by choosing the risky profile and shifting
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more risk on to its external creditors. If the large firm chooses the risky
profile, it generates high first-order counterparty risk and it will no longer be
a preferred counterparty over the small firms. In the light of this, consider
the absence of interventions. The large firm can choose the risky profile and
end up having a small number of counterparties. Instead, it can choose the
safer profile and have a larger but limited number of counterparties. The
tradeoff that the large firm faces involves a limited loss in the number of
counterparties. The “network stakes” are small. On the other hand, in the
presence of interventions, the large firm can choose a risky profile and end
up having a small number of counterparties. Instead, it can choose the safer
profile and have a very large number of counterparties. The tradeoff involves
a large loss in the number of counterparties. The network stakes are large.
In this sense, if the large firm finds it optimal to choose the safer profile in
the absence of interventions, then it also finds it optimal to choose the safer
profile in the presence of interventions. The possibility of interventions allows
small firms to use the threat of exclusion and discipline the risk taking by
the large firm. In this sense, surprisingly, bailouts can mitigate moral hazard
when endogenous counterparty choices and the threat of exclusion are taken
into account.

Finally we study ex-ante regulations imposed before the formation of the net-
work from a positive standpoint. For example, the regulator can put an upper
bound on total exposures for each firm in the spirit of liquidity or capital re-
quirements, or he can impose taxes. We illustrate that as the regulations get
more stringent, past a certain threshold, joint investments fall discontinuously
leading to a “phase transition” in the network. This suggests that extreme
care is needed when regulating networks.

Literature review. Farhi and Tirole (2012) study systemic bailouts (such
as interest rate policy) and collective moral hazard. There, bailouts are not
targeted to specific firms, and so firms can become jointly too-big-to-fail by
correlating their investment risk. In contrast, here, bailouts are targeted so
firms can not trigger bailouts by having correlated investments. Moreover, a
firm is not more or less likely to get bailed-out as a function of its counterpar-
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ties. The optimal policy either saves good firms or bad firms, where shocks
are determined exogenously. In other words, firms can not trigger bailouts by
correlating their counterparty choices either. Their counterparty choices be-
come correlated in response to a reduced risk for contagion through network
effects. Finally, risk-return type moral hazard is mitigated by the presence of
interventions, not exacerbated.

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a) study how the network struc-
ture and the size of shocks affect patterns of contagion. In their model of debt
contracts, a creditor A of a defaulting bank B can receive a positive repayment
from B, and the amount of repayment depends on the size of the shock to B.
Accordingly, the size of the shock to B can matter also for the recovery rates
of creditors of A if A also defaults. Size of shocks are essential for patterns
of contagion. In our model, links are joint investments and contagion spreads
only via the binary default of firms. A bad shock to B makes B default, and
the size of the bad shock to B does not affect A’s recovery rate. This is the
main distinguishing feature of our model compared to the counterparty-risk
models of Eisenberg and Noe (2001) and Elliott, Golub and Jackson (2014).
This simplicity allows us to characterize stable networks. The role of the size
of a bad shock in our model is to determine which firms receive bailouts. Some
firms are saved and some not, depending on the size of bad shocks.

Elliott, Hazell and Georg (2018) study the incentives of counterparties to cor-
relate the returns to their investments. They show that the correlation of
counterparty risk and the correlation of investment returns tend to be corre-
lated. This is systemic risk-shifting on the external creditors. In our paper,
there is no endogenous choice to correlate investment returns. The focus is
the effect of interventions on the correlation of counterparty-risk. We also
characterize the set of stable networks under limited liability.

Eisert and Eufinger (2018) study how banks who engage in intermediation can
benefit from the bailouts of others. In their model, the network topology (ex-
tensive margins) is exogenous. Banks are located in different countries and so
longer chains of exposures directly lead to a higher probability that contagion
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gets stopped along the way. If all banks belonged to one country, there would
not be incentives to form long chains. In this paper the network topology is
endogenous. Also, firms do not benefit from longer chains of exposures neither
in the absence nor in the presence of interventions.

Erol and Ordoñez (2017) study how ex-ante regulations affect the density of the
network. Our results on ex-ante regulations extend their analysis to account
for various forms of regulations.

This paper contributes to the literature on contagion and systemic risk in
economic networks. Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a), Ace-
moglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012), Elliott, Golub and Jack-
son (2014), Glasserman and Young (2015) study contagion in financial and
production networks. Acemoglu and Azar (2017), Acemoglu, Ozdaglar and
Tahbaz-Salehi (2015b), Erol and Vohra (2018), Elliott, Hazell and Georg
(2018) study formation of financial and production networks without inter-
ventions. Bernard, Capponi and Stiglitz (2017), Galeotti, Golub and Goyal
(2018), and Kanik (2018) study interventions without considering the stability
of networks. This paper is the first to investigate network formation in the
presence of contagion as well as the anticipation of bailouts. A longer discus-
sion of this literature and the ties to the literature on network games at large
can be found in Appendix B.1.1.

On the empirical front, to the best of our knowledge, the effects of interventions
on the network structure has not been studied in production networks. As for
financial networks, central banks are readily tasked with maintaining financial
stability. It is hard to find an example where a government has consistently
not intervened in face of systemic risk, so that banks would not anticipate
any interventions. Accordingly, one can consider the historical episodes where
central banks did not exist to intervene in the first place. Anderson, Erol and
Ordoñez (2018b) study bank correspondence networks and the establishment
of the Federal Reserve System in 1913. They find that the provision of public
liquidity resulted in higher concentration of interbank deposits at regional
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reserve city banks.5 This is in line with the testable predictions of our model.

Structure of the paper. Section 2 studies firms with bilateral exposures
facing contagion and describes the welfare criteria along with optimal inter-
ventions. Section 3 introduces the solution concept for network formation and
contrasts networks that are formed in the absence and presence of interven-
tions. We call these “network reactions” to the anticipation of interventions.
Section 4 studies welfare and systemic risk consequences of the presence of
interventions via network reactions, along with the interaction between net-
work hazard and moral hazard. Finally, Section 5 studies ex-ante regulations
and resulting phase transitions. Appendix A presents a more general model
and corresponding results. Appendix B has extra discussions and extensions.
Appendix C includes all proofs.

2 Simplified model
We begin by describing the timing of events in Figure 1. First a network is
formed by firms. Then firms receive some shocks that start contagion. Be-
fore contagion starts, the government intervenes to mitigate the forthcoming
contagion. Finally, given the network, shocks, and interventions, contagion
unravels. Proceeding in reverse order, we begin with in Section 2.1 describing
and discussing contagion for a fixed network in the absence of interventions.
Section 2.2 characterizes optimal interventions by the government for a fixed
network and a realization of shocks. Section 2.3 studies the impact of inter-
ventions on contagion. We study network formation in Section 3.

Figure 1: Timing of events

PayoffsInterventions ContagionShocks realizeNetwork formed

5They argue that this lead to higher vulnerability in the network. Calomiris et al.
(2019) argue that the presence of the Federal Reserve Bank likely increased systemic risk
by distorting banks’ incentives to manage network liquidity risk. Miron (1988) and Selgin
et al. (2012) show that the U.S. economy has seen more volatility since the establishment
of the FED.
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2.1 Model
Consider firms, financial or not, that borrow from external creditors by issuing
debt. This can be via deposit accounts or corporate bonds. Then firms make
investments in pairs aside of their private investments. The pairwise invest-
ments can be real projects or investments into financial instruments such as
swaps that create mutual exposures. After investments, shocks to returns of
assets are realized. If firms can repay their liabilities, they stay in business
(continuation). Otherwise, they default, which results in the failure of their
investments. Failed investments have lowered return for the non-defaulting
counterparty. Defaulting firms are protected by limited liability.

Firms and the network: There is a finite set of firms N = {1, 2, ..., n} with
exposures to each other. The exposure of i to j is eji ∈ R≥0. The network is
e = [eij]i,j≤n. (We take eii = 0.) Here eji is i’s contribution into its investment
with j, which forms the bases of the exposure of i to j’s default. Firm i

also has a private investment of fixed size pi. The total size of investments
is ∑j eji + pi, which is funded by debt from external creditors, borrowed at a
fixed rate ri.6 The net liabilities of i above and beyond (pi+

∑
j eji)ri is zi ≥ 0.

Total liabilities are then (∑j eji + pi)ri + zi.

Shocks and defaults: The returns to assets of i are stochastic and given by
θi per unit, net of operational, regulatory, or other costs. The returns are
either high or low: θi ∈ Θi = {θGi, θBi} where θGi and θBi are constants
with θBi < ri < θGi.7 θGi is the good shock and θBi is the bad shock. The
shocks are drawn jointly from some distribution D ∈ ∆(⊗iΘi). We also call
firm i good/bad when θi is good/bad. After shocks are realized and publicly
observed, each firm chooses to default or continue.8 Denote ai = 1 the default
choice and ai = 0 the continuation choice.

Payoffs: For firm i, the total size of its investments in which the counterparty
6Endogenizing ri does not change the qualitative results but introduces a lengthy analysis.
7We can assume shocks to the liability side as well. For example ri could be a floating

rate. We assume this away for simplicity and focus on shocks to the asset side.
8This is without loss of generality. Even if firms are allowed to default selectively on

their investments, they either continue with all investments or default on all investments.
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has defaulted is Σjejiaji. Returns to these assets are reduced to a fraction
1 − ηi ∈ (0, 1) due to the counterparty defaults. Here 1 − ηi is the default
recovery rate or ηi represents fire-sale or liquidation costs. The investments of
i in which the counterparty has not defaulted sum up to size ∑j eji(1 − aj).
Then the payoff of i is

[−((Σjeji + pi)ri + zi)︸ ︷︷ ︸
liabilities

+ θi(Σjeji(1−
counterparty loss︷ ︸︸ ︷

aj) + Σjeji(1− ηi)aj + pi)︸ ︷︷ ︸
assets

](1− ai)︸ ︷︷ ︸
default

Note that only the exposures of i matter for i’s payoff, not the exposures to i.
Denote ei = Σjeji. Also denote ci = Σjejiaj the size of counterparty defaults
on i. Finally denote κi = θGiηi

θGi−ri
and φi = zi

θGi−ri
− pi. Then the default payoff

is 0 whereas the continuation payoff is
PCi (ei, ci) = −(pi + ei + zi)ri︸ ︷︷ ︸

liabilities

+ θGi(pi + ei − ηici)︸ ︷︷ ︸
assets

= (θGi − ri) (ei − ciκi − φi)

∝ ei − ciκi − φi.

Here, ci is the endogenous outcome of defaults. ei will be endogenized when
we study network formation. The parameters κi, φi, θGi, ri are exogenously
given.

Remark: Appendix A presents a general model where the default payoff
can be any function PDi(ei) and the continuation payoff can be any function
PCi(ei, ci) that is decreasing in ci. In our simplified model, PDi(ei) ≡ 0 and
PCi (ei, ci) = (θGi − ri) (ei − ciκi − φi) is an affine function. Appendix B.1.2
describes how the general model can be applied to variations of some estab-
lished counterparty risk models.

Equilibrium and contagion. Given the realized network and shocks, this game
is supermodular. Then, via Topkis’ Theorem, the best responses are increas-
ing, where continuation is the higher action and default is the lower action. In
return, Tarski’s Theorem implies that the set of (Nash) equilibria is a complete
lattice. The top element of the lattice, the best equilibrium, corresponds to the
outcome of the exogenous contagion dynamics described in our model. The
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steps of iterated elimination of strictly dominated strategies are isomorphic to
the rounds of contagion.9

Contagion unfolds as follows. Since θBi < ri and liabilities are positive, a bad
firm i gets a negative payoff if it continues. Then it chooses to default and
gets 0 due to limited liability. In this manner, all bad firms default in the first
round of contagion. Denote c̃i = Σjeji1θj=θBj

. Since bad firms default in the
first round of contagion, the counterparty losses of a good firm i is c̃i. In the
second round of contagion, a good firm i defaults if its immediate counterparty
loss c̃i exceeds

Ri (ei) = 1
κi

(ei − φi) .

We call Ri the resilience function of i. After some good firms default in the
second round of contagion, more good firms can find that their counterparty
losses exceed their resilience and choose to default. At each round of contagion,
counterparty losses of each firm weakly increases. Contagion stops when no
more firms default in a round. Due to the standard Tarski argument, at the
end of contagion, each firm has c∗i total counterparty losses where c∗i is the
counterparty losses of i in the best equilibrium in the lattice. Hence, the
outcome of contagion is identical to the best equilibrium in the lattice.

Welfare. Regarding welfare, (ei + pi)ri + zi are transfers to external creditors
who also make up a part of the economy. The repayment does not factor into
welfare since it is simply a transfer. Welfare criterion (after shocks, before
defaults) is driven by returns from assets. This is

W =
∑
i

θi(1− ai)
(
pi +

∑
j

eji(1− ηiaj)
)

(1)

There are two inefficiencies in the contagion stage. First, if a large number of
counterparties of a firm default, liabilities to external creditors force the firm
into default, which leads to the failure of efficient investments. Second, when

9See Vives (1990) and Milgrom and Roberts (1990) for the lattice Nash equilibria. The
Tarski argument is used in many contagion models, including Eisenberg and Noe (2001) and
Elliott et al. (2014). Most models of counterparty risk work with the best equilibrium. To
the best of our knowledge, the only exception that studies other equilibria in the lattice is
Jackson and Pernoud (2019).
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a firm defaults, it does not internalize the losses it causes to its counterparties.

2.2 Interventions
Suppose that there is a government who aims to maximize welfare. The gov-
ernment has no budget constraint. After shocks are realized and observed,
before contagion, the government can intervene and implement transfers, such
as by capital injections or subsidies. Denote Qi ≥ 0 the transfer to i. Given
transfer rule Q = (Qi)i∈N , the liabilities of i are reduced by Qi. We call Q opti-
mal if it maximizesW and uses minimal transfers in doing so, given that firms
play the best Nash equilibrium of the induced game.10 Minimal transfer re-
striction is to ensure robustness against small costs of transfers. Interventions
can potentially fix the inefficiency by enabling firms to repay their liabilities
and see their efficient investments to maturity. We say a policy Q saves i if i
receives a positive transfer and continues, whereas it would default under any
transfer rule Q′ with Q′i < Qi and Q′−i = Q−i.

Proposition 1. The unique optimal policy saves all firms with positive shocks
who are facing default due to counterparty losses. The transfers make saved
firms indifferent between defaulting and continuing. In particular,

Q∗i =
[ liabilities︷ ︸︸ ︷
((pi + ei)ri + zi)−

assets︷ ︸︸ ︷
θi(pi + ei − ηi

∑
j:θj<0

eji)
]+
1θi>0

The idea is simple. Firms with negative shocks are unproductive and they
default even after receiving a transfer. Then the optimal policy does not
entail any transfers to these firms. It is efficient for firms with positive shocks
to continue their operations. If such a firm is pushed into default after sizable
counterparty losses, this firm can be induced to continuation by appropriate
transfers that cover part of its liabilities to external creditors.11

We consider two cases in what follow. The first is the case is θBi < 0 for all
i. We call this the case of large (bad) shocks. The second is the case of small

10Notice that the game is supermodular for any transfer rule.
11In Appendix B.2.1, we consider an alternative setting in which the government can

commit to transfers that are conditional on default choices. Then agents with negative
shocks can also be induced into continuation. Results remain similar.
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(bad) shocks: θBi > 0 for all i. By Proposition 1, under large shocks, the
optimal policy is to save all good firms that are facing default due to their
bad counterparties. Under small shocks, the optimal policy is to save all bad
firms.12

2.3 Counterparty risk
In this section we study the impact of interventions on contagion. Two key no-
tions are helpful. First-order counterparty risk (FCR) is the risk that losses can
be incurred due to defaulting bad counterparties. Second-order counterparty
risk (SCR) is the risk that losses can be incurred due to defaulting good coun-
terparties who default due to their bad counterparties. These are illustrated
in Figure 2. Higher order of counterparty risks can be defined analogously.
Clearly, if a firm i faces no FCR, then it faces no SCR either.

Figure 2: First-order and second-order counterparty risks

θB

i

(a) FCR faced by i

θB

θBji

(b) SCR faced by i through j
Figure 2-a illustrates a bad shock to one of i’s counterparties. In this case, the
counterparty defaults, which creates a loss for i. This risk is FCR for i. Figure 2-b
illustrates two bad shocks to counterparties of j who is good counterparty of i. These bad
shocks, if sufficiently many, can force j into default, which creates a loss for i. This risk is
SCR for i.

Under large shocks, only good firms in need of interventions are saved. That
is, all good firms surely continue at the contagion stage. This eliminates SCR.
Nevertheless, bad firms do not receive transfers and they default. Hence FCR
is not altered by interventions. Under small shocks though, bad firms are saved
and contagion is stopped immediately. Good firms do not need bailouts. Then

12Our results easily extend to the cases where for some firms bad shocks are large and for
some bad shocks are small. We skip the detailed analysis of the mixed case to save space.
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all firms understand that all firms will continue. This eliminates FCR as well
as SCR.

In either case, SCR is eliminated. The default threshold (resilience) R is in-
creased artificially by interventions. Firms understand that their counterpar-
ties are not going to transmit contagion that started elsewhere in the network.
Under small shocks, additionally, FCR is eliminated which changes the func-
tion P . Firms understand that their counterparties are not going to default,
in particular, they are not going to start contagion. These are illustrated in
Figure 3.

Figure 3: Effects of interventions on counterparty risk

ci
eiRi(ei)0

0

PCi(ei, ci)

Pi(ei, ci)

(a) Payoffs and resilience,
Absence of interventions

R∗i (ei)0 c̃i

Pi (ei, c̃i)

(b) Large shocks,
Presence of interventions

Pi (ei, c̃i)

R∗i (ei)0 c̃i

(c) Small shocks,
Presence of interventions

Figure 3-a shows the payoff and resilience functions in the absence of interventions. If ci

is the extent of counterparty losses, i gets Pi (ei, ci) := max{0, PCi (ei, ci)} payoff. Fig-
ure 3-b shows the changes in the presence of interventions under large shocks. Only bad
firms default and so the payoff function depends on c̃i instead of ci. SCR is eliminated
which artificially shifts the resilience function Ri to R∗i (ei) ≡ ei. The payoff of i is
Pi (ei, c̃i) := max{0, PCi (ei, c̃i)} because optimal interventions make saved firms indiffer-
ent between defaulting and continuing in order to minimize the transfers. Figure 3-c shows
the changes in the presence of interventions under small shocks. Now all bad firms are saved
so the continuation payoff of a good firm i shifts up to Pi (ei, c̃i) := PCi (ei, 0).

3 Network reactions to the anticipation of in-
terventions

Now we move to the analysis of network formation. The notion of stability
is given in Section 3.1. Our task is to demonstrate the effects the anticipa-
tion of interventions on the network formed. We do this by comparing the
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stable networks formed in the absence of interventions (in AOI ) and in the
presence of interventions (in POI ). To be precise, POI refers to the model we
have described thus far whereas AOI refers to the model wherein there is no
government to intervene. The first effect of the anticipation of interventions is
to make the network more interconnected, studied in Section 3.2. The second
effect is to make the network more concentrated, studied in Section 3.3. For
each effect, we use the simplest version of the lead application to make the
point.

3.1 Stability
Our focus in this paper is the topology of network rather than the intensity
of links. In other words we are interested in endogenous extensive margins
rather than endogenous intensive margins. So we take a given non-negative
weight matrix w = [w]i,j≤n. If i and j decide to form a link, their exposures
to each other are given by eij = wij and eji = wji. If they do not form a link,
their exposures are eij = eji = 0. We denote {i, j} ∈ E whenever i and j form
a link. The endogenous part of the network, i.e. the set of extensive margins,
is represented by E. If two firms i and j end up forming a link, we call them
counterparties. We denote Ni the set of counterparties of i.

We assume that firm i can feasibly have exposures at most ei, where ei > 0 is a
constant.13 We call Ni is feasible for i if ei ≤ ei. A network is called feasible if
each firm has a feasible set of counterparties. Before shocks are realized, firms
evaluate a network according to the expectation of their payoffs with respect
to shocks, anticipating interventions and contagion that follow.

Consider a feasible network E and a subset N ′ of firms. A deviation by N ′

from E is one in which N ′ can simultaneously add any missing links within
N ′, cut any existing links within N ′, and cut any of the links between N ′ and
N/N ′. Figure 4 illustrates a deviation.

13The exposure bound can capture the credit line available for the firm to borrow from
external creditors. It can also be implied by scarce intangible assets and resources, such as
human capital, reputation, relationships, that are needed to form or manage partnerships
and investments.
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Figure 4: A deviation

(a) Candidate network

1
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b

(b) Deviation

1
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b

a

(c) After deviation

Figure 4-a shows a candidate network. Figure 4-b shows a deviation by firms 1, 2, 3, and
4. They cut the links {1, 2}, {3, 4}, and add the links {1, 3}, {2, 4}, among themselves. 1
unilaterally cuts a link with non-deviator a and 2 unilaterally cuts a link with non-deviator
b. The resulting network after the deviation is shown in Figure 4-c.

A feasible deviation by N ′ is a deviation after which the resulting network is
feasible. A profitable deviation byN ′ from E is a feasible deviation in which the
resulting network yields strictly higher payoff to all members of N ′. A network
E is Strongly Stable if there are no subsets of N with a profitable deviation
from E. A network E is Pareto Efficient Strongly Stable if it is Strongly
Stable and Pareto efficient.14 We use stable as a shorthand for Pareto Efficient
Strongly Stable. We assume that agents form a stable network before shocks.

Going forward we denote di = |Ni| the number of counterparties of i (namely
the degree of i), fi the number defaulting counterparties of i, and bi the number
of bad counterparties of i.

3.2 Intervention induced interconnectedness
In this section, we show how interventions make the network more intercon-
nected. For this purpose, it suffices to study identical firms.

Assumption 1. All firms are identical: ei = e, φi = φ, wij = w > 0 for
all i, j. Firms are not guaranteed to default, but they are subject to contagion
risk: e > φ > w and κ ≥ 1. Shocks are i.i.d., good with probability α ∈ (0, 1).

Throughout Section 3.2 we maintain Assumption 1. Let b ∼ B [d, 1− α] be a
14Versions of strong stability are introduced in Dutta and Mutuswami (1997) and Jackson

and Van den Nouweland (2005). See Appendix B.2.2 for a discussion of the solution concept.
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Binomial random variable with d independent trials and 1−α success probabil-
ity. Define V (d) = Eb[[d− bκ− φ/w]+] and denote d∗ = arg maxdw≤e V (d).15,16

In order to rule out some typical integer problems we assume that w divides
e and 2 (d∗ + 1) divides n.17 Fixing these, we study small shocks in Section
3.2.1 and large shocks in Section 3.2.2.

3.2.1 Small shocks and FCR

Consider the case of small shocks. Recall that the optimal policy is to save all
bad firms. Thus, FCR is eliminated by interventions.

Proposition 2. Suppose that Assumption 1 holds and bad shocks are small.
In the absence of interventions, a network is stable if and only if it consists of
disjoint (d∗+1)-cliques.18 In the presence of interventions, a network is stable
if and only if it is (e/w)-regular.19

The changes in the network structure are illustrated in Figure 5. The network
in AOI is given by Figure 5-a whereas in POI it is given by Figure 5-c. There
are two changes to the network in response to the anticipation of interventions.
First, the exposures of firms go up from d∗w to e. Second, cliques dissolve
into an interconnected network. Note that ((e/w) + 1)-cliques also are (e/w)-
regular, hence stable in POI. So, the change in the structure is driven by a
different channel from the one that increases the exposures from d∗w to e.

The reason the exposures go up is that FCR is eliminated. In choosing their to-
tal exposures (proxied by the total number of counterparties), instead of max-
imizing Eb[[d− bκ− φ/w]+] firms now maximize Eb[[d− φ/w]+]. The change

15x+ denotes max{x, 0}.
16The maximizer d∗ is generically unique. We ignore the non-generic cases.
17Integer problems are typical in network formation and coalition formation literature.

We can still pin down the stable networks without the divisibility assumptions but this
effort requires much extra notation and yields no further insight.

18A clique is subnetwork of firms that are all counterparties of each other. A subnetwork
is a subset of firms and all of their links with each other that are present in the original
network. Order is the number of firms in a subnetwork. A (d+ 1)-clique is a clique or order
d + 1. Disjoint refers to a subnetwork whose firms are not counterparties with any firm
outside the subnetwork.

19A d-regular network is one in which all firms have d counterparties.
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Figure 5: Network reactions to the anticipation of interventions: increased
interconnectedness

(a) Absence of
interventions

(b) Large shocks,
Presence of interventions

(c) Small shocks,
Presence of interventions

Figure 5-a illustrates the network formed in AOI. Firms form cliques to increase clustering.
Figure 5-b and -c illustrate the networks that are formed in POI under large and small
shocks, respectively. When shocks are large and so only good firms are saved, the network
becomes interconnected but total exposures of individual firms do not change. When shocks
are small and so bad firms are saved, the network becomes interconnected and the exposures
per firm go up.

in the network structure is because SCR is eliminated. In AOI, firms desire
high clustering to protect themselves against contagion. When they antici-
pate that, in POI, their good counterparties will continue regardless, firms no
longer need to form cliques.

Nonetheless, since SCR implies FCR, it is difficult to disentangle the two effects
and formalize this insight. For this reason, next, we study large shocks. Under
large shocks, only SCR is eliminated and the effects are better disentangled.

3.2.2 Large shocks and SCR

Consider the case of large shocks. Recall that the optimal policy is to save
good firms who are facing default due to their bad counterparties. Thus, SCR
is eliminated by interventions.

Proposition 3. Suppose that Assumption 1 holds and bad shocks are large.
In the absence of interventions, a network is stable if and only if it consists of
disjoint (d∗ + 1)-cliques. In the presence of interventions, a network is stable
if and only if it is d∗-regular.

The network in AOI and POI are illustrated in Figure 5-a and 5-b, respectively.
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This results makes the contrast between FCR and SCR more clear. When
FCR is not altered but SCR is eliminated, firms do not change their total
exposures. Nevertheless, the effect on the topology of the network persists.
Instead of clusters, firms form any interconnected network.

In fact, the very reason firms form clusters in AOI is the SCR. Consider a
candidate network and suppose that two firms i and j have counterparties
that are not counterparties of the other, say i′ ∈ Ni\Nj and j′ ∈ Nj\Ni. Then
a bad shock to i′ can make i switch to default on the margin, which creates
losses for j. Likewise for j′ and i. Then i and j have incentives to connect
to only i′ or only j′. This needs the consent of i′ or j′, yet, at a collective
level, since all pairs have incentives to have common counterparties, they form
dense clusters and maximize the number of their common counterparties. This
collective force is pictured in Figure 6 with five firms. When SCR is eliminated
by prospective interventions, this channel breaks down. i no longer needs to
be concerned with j′ because j will be saved even if j′ were to marginally push
j into default. However, firms are not incentivized (during network formation,
by the ex-post interventions after shocks) to form more or less links compared
to AOI. Firms with bad shocks are not saved and they default. Since FCR is
not altered, exposures of each firm remain d∗w in POI.

Figure 6: Rationale for clustering in the absence of interventions

1 2 3 4 5

(a) Chains of exposures lead to
redundant SCR

1 2 3 4 5

(b) Clustering eliminates redundant
SCR with same total exposure

Figure 6-a shows SCR under the lack of clustering. 3 is exposed to 1 via 2 and to 5 via 4.
2 is exposed 4 and 4 is exposed to 2, via 3. In Figure 6-b, firms 2, 3, and 4 eliminate these
exposures by clustering together. In the general model in Appendix A, agents form highly
clustered networks, but not necessarily disjoint cliques. There it becomes more apparent
that cliques in AOI are only a manifestation of a need for clustering.

Now the contrast is more clear. If firms want to have upsides of having coun-
terparties, the downside by direct exposure to counterparties is inevitable. Ac-
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cordingly, FCR captures the propensity of firms to form links and determines
the density of the network. Eliminating FCR with interventions increases the
propensity to form links.

As for SCR, by some collective care in the choice of counterparties, being
mindful of the counterparties of their counterparties, firms can eliminate SCR
while keeping FCR fixed. Thus SCR influences the topology of the network.
Eliminating SCR with interventions reduces market discipline that would lead
to the formation of the clusters.

3.3 Intervention induced concentration
Having made the distinction between the effects of FCR and SCR, now we
study more elaborate effects of interventions that emerge under heterogeneity.
We will focus on large shocks so that only SCR is eliminated. FCR is not al-
tered and the propensity of firms to form links does not change. Moreover, we
will make parametric assumptions ensuring that the net present value (NPV)
of links is positive for firms, and so firms prefer to form as many links as pos-
sible even in AOI. These two will guarantee that firms can not be incentivized
by interventions to increase their exposures. Therefore, the sole effect of in-
terventions is to alter which firm want to form links with which firms, without
any effect on how many links a firm wants to have. The main channel is the ef-
fect of interventions on how firms evaluate the identities and network positions
of their counterparties, without any effect on the number of counterparties of
firms. In other words, the only channel through which interventions affect
the network is the topology or the shape of the network, not the density of
the network. This is an intentional modeling choice to illuminate the network
effects of interventions.

Assumption 2. There are two types of firms, large and small. Denote the set
of small and large firms S and L, respectively. There are n − 1 many small
firms and one large firm. Potential exposures are given by wij = wS = 1 if
i, j ∈ S and wij = wL ≥ wS otherwise. The exposures of the large firm is not
bounded: eL = ∞.20 Small firms can afford at least one link with the large

20The large firm can be seen as a firm with access to a high credit limit. This can be a

21

Electronic copy available at: https://ssrn.com/abstract=3034406



firm: eS ≥ wL. There is a non-trivial probability that the large firm can default
due to contagion: φL ≥ wL and κL > 1. (For tractability) Small firms can
default with bad shocks but not with counterparty defaults: φS = 0 and κS = 1.
Denote the size of the good shocks for small firms θGS and the size of the good
shock for the large firm θGL. Bad shocks are large for all firms.

We maintain Assumption 2 throughout Section 3.3. In order to avoid integer
problems, we further assume that eS and eS − wL are even integers and n ≥
2(eS + 1). Bad shocks are large under Assumption 2 so the optimal policy is
to save good firms who face default due to their bad counterparties. Fixing
these, we study independent shocks in Section 3.3.1 and correlated shocks in
Section 3.3.2.

3.3.1 Emergence of concentration

Assumption 3. All shocks are i.i.d., good with probability α ∈
(
1− 1

κL
, 1
)
.

For the large firm, one link in isolation has net value w(1− (1− α)κL). Since
1 > α > 1− 1

κL
, links have positive NPV for the large firm. Notice that links

have positive NPV also for the small firms because κS = 1.

Proposition 4. Suppose that Assumptions 2 and 3 hold. In the absence of
interventions, the following network is stable. The large firm has no counter-
parties. Each small firms has eS many small counterparties. In any stable
network, the large firm has at most eS many small counterparties. All small
firms have eS exposure (eS many small counterparties or eS − ωL many small
and one large counterparty). In the presence of interventions, a network is
stable if and only if the large firm is counterparties with all firms and all small
firms have eS − wL many small counterparties.

Network formed in AOI is illustrated in Figure 7-a and the one formed in POI
is shown in Figure 7-c. In AOI, the large firm poses the risk of transmitting
contagion, and so small firms do not form any links with the large firm. In

consequence of high collateral or good reputation.
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POI, contagion through the large firm is no longer a concern. Pareto efficiency
requires that all small firms form links with the large firm. The stable is
network “fully concentrated” around the large firm.

Figure 7: Network reactions to the anticipation of interventions: increased
concentration

(a) No concentration,
Absence of interventions

(b) Bounded concentration,
Absence of interventions

(c) Full concentration,
Presence of interventions

Figure 7-a illustrates a stable network in AOI under i.i.d. shocks. Small firms either do not
connect to the large firm or only a few of them do. In POI under i.i.d. shocks, the network
becomes the one shown in Figure 7-c. Small firms are indifferent between forming links with
the large firm or other firms and Pareto efficiency ensures that the large firm connects with
all small firms.
Figure 7-b illustrates a stable network in AOI under correlated shocks. Small firms solve a
tradeoff between low FCR and high SCR by connecting to the large firm. A limited number
of small firms connect with the large firm. In POI under correlated shocks, the network
becomes the one shown in 7-c. SCR is eliminated and all small firms strictly prefer to
connect with the large firm.

At first, one might think this insight depends on α being the same for the
large firm and the small firms. Suppose the large firm has αL probability and
small firms have αS probability of getting good shocks. If αL is smaller than
αS, small firms would not form links with the large firm neither in AOI nor in
POI. The anticipation of interventions does not alter the concentration. If αL
is larger than αS, then we have two cases. If links of the large firm are positive
NPV, i.e. (1 − αS)κL < 1, then all firms form links with the large firm both
in AOI and in POI (provided that there are sufficiently many small firms so
that LLN can wash away the variance of FCR in AOI). The anticipation of
interventions does not alter the concentration. Only when links with the large
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firm are negative NPV, i.e. (1− αS)κL > 1, and αL > αS, the anticipation of
interventions changes the concentration.

So it may appear that this insight is valid only in small networks or when
there is symmetry between the large firm and the small firms in terms of
their shocks. But these arguments also hinge on the fact that shocks are
independent. If shocks are slightly correlated, concentration is significantly
increased in response to the anticipation of interventions without any of these
restrictions. In this sense, the insight that concentration increases is not an
artifact of large and small firms having the same probability of good shocks.
This is what we show next.

3.3.2 Increased concentration

Assumption 4. There is αL probability that the large firm independently gets
a good shock. Shocks of small firms are conditionally independent. There is a
high state and a low state. The high state has probability σ ∈ (0, 1) and the
low state has probability σ′ = 1−σ. In the high state, shocks of small firms are
i.i.d., good with probability αS ∈ (0, 1]. In the low state, shocks of small firms
are i.i.d., good with probability α′S ∈ [0, αS). Also, σαS + σ′α′S > 1− 1

κL
> α′S

and αL >
σα2

S+σ′α′2S
σαS+σ′α′S

.

Proposition 5. Suppose that Assumptions 2 and 4 hold. Then there exists
dL > 0 such that for any n and eS, the following hold. Let d∗L = min{dL, n−
1}. In the absence of interventions, any network in which the large firm has
d
∗
L many small counterparties and small firms have exposure eS (eS many

small counterparties or eS − ωL many small and one large counterparty) is
stable. In any stable network, the large firm has at least d∗L many and at most
max{d∗L, eS} many small counterparties whereas small firms have exposure eS.
In the presence of interventions, a network is stable if and only if the large
firm is counterparties with all firms and small firms have exposure eS.

Network formed in AOI is illustrated in Figure 7-b and the one formed in
POI is shown in Figure 7-c. In AOI, small firms solve a tradeoff between the
reduced FCR from the large firm and the increased SCR through the large firm
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in the low state. Small firms then form a “bounded concentration” around the
large firm to limit the SCR through the large firm. In POI, SCR is eliminated
along with the tradeoff. The network becomes “fully concentrated” around
the large firm due to the smaller FCR the large firm poses.

The condition σαS + σ′α′S > 1− 1
κL

makes the large firm have an unbounded
propensity to form links. It is not warranted that small firms want to form links
with large firms though. If, hypothetically, there were no SCR through the
large firm, by αL(σαS +σ′α′S) > σα2

S +σ′α′2S , small firms would have preferred
to form a link with the large firm over forming wL links with small firms.
However, there is SCR through the large firm in the low state. α′S < 1 − 1

κL

implies, via law of large numbers, that if the large firm has a large number
of counterparties, in the low state, it defaults with high probability. In other
words, the large firm creates SCR in the low state. Moreover, the SCR through
the large firm conditional on the low state increases in the number of the
counterparties of the large firm. Here dL is the point at which the FCR benefits
and SCR costs of forming a link with the large offset each other.

Note that dL depends only on αS, α′S, αL, and σ (defined in the proof of
Proposition 5). If αL is too large compared to αS and α′S (i.e. αL > σα2

S+σ′α′2S
σαS

),
the costs of increased SCR through the large firm is always less than the benefit
of reduced FCR from the large firm. In this case, dL =∞. All small firms form
links with the large firm knowing that the large firm will most likely default
in the low state. If, however, αL is not so large (σα

2
S+σ′α′2S

σαS+σ′α′S
< αL <

σα2
S+σ′α′2S
σαS

),
there is a finite cutoff at which SCR costs exceed FCR benefits. In this case
we have dL < ∞. Small firms want to form links with the large firm, up to
the point that the large firm does not have an exceedingly high probability of
defaulting in the low state. Beyond dL (the endogenous finite upper bound on
the number of small counterparties that the large firm can have in equilibrium)
additional small firms prefer to have links only with small firms rather than the
large firm. For a small firm, the value of a link with the large firm is decreasing
in the number of counterparties of the large firm, and dL is the point at which
the value of a link with the large falls below the value of forming links with
wL many small firms instead. Further discussions of this section can be found
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in Appendix B.2.4.

4 Network hazard and moral hazard
In Section 4.1, we discuss welfare and moral hazard consequences of interven-
tions. In Section 4.2, we study systemic risk consequences. In Section 4.3, we
extend the model to allow for the large firm to choose its risk-return profile in
order to further investigate how interventions interact with moral hazard on
risk-return dimension.

4.1 Moral hazard on investment size
We call the adverse consequences of eliminating SCR the second-order network
hazard (SNH). We call the adverse consequences of eliminating FCR that do
not emerge when only SCR is eliminated the first-order network hazard (FNH).

Welfare. Recall that welfare criterion after shocks before contagion is given
by W in Equation (1). Assuming that investments are positive NPV, in all
cases we have considered thus far, E [W ] is higher in POI than in AOI. Firstly
because interventions fix the inefficient defaults and secondly, the anticipation
of interventions (weakly) increase the total size of investments. Ex-ante welfare
(after network formation, before shocks) would be −∑ ei + E[W ] by taking
the costs of investments into account. By ri > 1, if investments are positive
NPV (for banks), then they are also positive NPV for welfare. Hence, ex-ante
welfare is also higher in POI than in AOI.

Moral hazard. By the limited liability, there is already moral hazard in AOI.
This can be because outside creditors are protected by deposit insurance which
shifts the risk on to the government. It can also be because external creditors
can not observe the network structure which means that the risk is shifted on
to external creditors. The question is, how does this moral hazard interact
with interventions?

First, consider the results in Section 3.2 regarding interconnectedness. Under
FNH, investments go up. This means more risk-shifting mainly onto the gov-
ernment and tax-payers who fund the interventions, and potentially onto the
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external depositors who fund the investments. Thus FNH exacerbates moral
hazard in investment size. SNH, however, does not result in more risk-shifting
because firms do not undertake more investments. In this sense, SNH does not
directly interact with moral hazard. It is a collective form of lack of market
discipline. Then what is the sense in which second-order network hazard is a
“hazard?”

For this purpose, consider the results in Section 3.3. The large firm takes on
more investments in POI than in AOI. At first, this can be seen similar to
FNH since investments go up. Nevertheless the channel is different. We have
shown that FNH increases the propensity of firms to make investments.
This directly leads to more risk-shifting. Under SNH, the propensities of
firms to make investments do not change. In particular, the large firm always
wants to have as many counterparties as possible regardless of AOI or POI.
SNH only makes the small firms less concerned with SCR through the large
firm, and so more small firms become counterparties with the large firm. This
only enables the large firm to have more counterparties, without any effect
on its propensity to form links. In fact, the propensity of the small firms’
do not increase either, and the total size of their investments is not affected.
Small firms merely change the identity of their counterparties in response to
the anticipation of interventions. Simply because small firms have the same
exposure, but now with the large firm, the total size of investments in the
economy doubles. SNH in the form of risk shifting in investment size emerges
indirectly through a pure network effect, in equilibrium, not a direct
propensity effect. Accordingly, SNH enables more moral hazard whereas FNH
incentivizes more moral hazard regarding the size of investments. In this sense,
FNH is a typical form of individual moral hazard in a multi-agent environment,
but SNH results in a novel form of collective moral hazard specific to networks.

4.2 Volatility and systemic risk
SNH has a second manifestation: volatility and systemic risk. When the large
firm is enabled to have more counterparties, the concentration of links around
the large firm increases. When concentration increases, a large part of the

27

Electronic copy available at: https://ssrn.com/abstract=3034406



economy becomes exposed to the idiosyncratic risk of the large firm. The per-
formance of the whole economy correlates highly with the performance of the
large firm. If the large firm gets a good shock, concentration proves beneficial.
Many projects yield high return. In the event that the large firm gets a bad
shock, the entire set of small firms suffer losses. Inefficient defaults are in-
deed prevented by interventions, but the large output losses due to bad shock
to the large firm is permanent. This part of welfare losses can not be fixed
by interventions. Accordingly, welfare volatility and systemic risk emerges in
POI. Note that these channels are different from the forms of collective moral
hazard that arise under systemic interventions, such as in Farhi and Tirole
(2012). Our interventions are targeted, firms do not correlate their risk in
order to trigger interventions, and our firms are actually made indifferent be-
tween defaulting and continuing. A firm does not even benefit ex-post from
its own bailout, but it benefits from the bailouts of its counterparties.

Next we formalize this insight about volatility. Consider one large firm and
many small firms with correlated shocks as described in Section 3.3.2. Simu-
lations verify the emergence of volatility: Figure 8 illustrates the probability
distribution of welfare. We provide some asymptotic analytical results for the
variance of welfare in Proposition 6.

Proposition 6. Suppose that Assumptions 2 and 4 hold. (For simplicity)
Suppose that ηS = ηL =: η, θLG = θSG =: θG.21,22 As n → ∞, the limit
variance of average welfare is lower in the absence of interventions than in

21To illuminate the effect of the network structure we assume away other heterogeneity
pertaining to welfare and take counterparty loss sizes and shock sizes same across large and
small agents: ηS = ηL =: η, θLG = θSG =: θG.

22For analytical results on welfare along the lines of Section 3.3.2 for the networks de-
scribed in Proposition 3.2, we need to specify one of the networks that can emerge. We
consider cliques for the network amongst small firms who are not counterparties with the
large firm as a selection amongst all the regular stable networks. Without a deterministic se-
lection, we need to identify a probability distribution over regular networks. Unfortunately,
the set of regular networks on a given set of vertices does not have a closed form expression.
There are only algorithms that generate this set. Furthermore, even for a given arbitrary
regular-network, in order to calculate welfare, one must identify the distribution of the size
of the cutset between good and bad firms. This is an open problem in graph theory to the
best of our knowledge.
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Figure 8: Probability Distribution of Welfare
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Figure 8 illustrates the probability distribution of welfare in AOI (dashed line) and POI
(solid line). In AOI, there is bounded concentration and the large firm’s idiosyncratic shock
has bounded impact. Welfare is largely determined by the aggregate shock, manifesting the
two modes of the distribution. In POI, there is full concentration around the large firm.
The welfare, now, is determined largely by both the aggregate shock, but more so by the
idiosyncratic shock to the large firm. A bad shock to the large firm results in significantly
low welfare. Values used here are as follows: σ = 0.5, αL = 0.8, αS = 0.8, α′S = 0.5,
n = 200, wL = φL = 4, eS = 4, κL = 3 ηS = ηL = 0.9. In this example, dL = 1. If αL is
increased towards 1, dL can go up to 7.

the presence of interventions. The variance in the absence of interventions
is solely due to the aggregate shock σ. In the presence of interventions, large
firm’s idiosyncratic shock contributes to volatility. In particular, the former
(absence of interventions) is given by

σσ′(αS − α′S)2(1− η + η(αS + α′S))2(eSθG)2

The latter (presence of interventions) is larger than the former by at least
αL(1− αL) (1− η + 2η(σαS + σ′α′S))2 (wLθG)2.

4.3 Moral hazard on the risk-return dimension
Next we study the interaction between interventions and moral hazard in in-
dividual risk taking under network effects. In order to study this question,
we extend the model to analyze individual risk taking as follows. Suppose
that the large firm can choose one of two possible risk-return profiles before
network formation. It can either keep (αL, θGL) or it can choose a high risk
high return profile (α′L, θ′GL) where αL > α′L and αLθGL < α′Lθ

′
GL. The large
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firm has motives to take on more risk since the upside of the high risk profile
is higher. This means more risk shifting onto external creditors.23

Proposition 7. Suppose that Assumptions 2 and 4 hold. Further, suppose
that 1− 1

κL
< α′L <

σα2
S+σ′α′2S

σαS+σ′αS
. Then moral hazard is mitigated by the presence

of interventions: for any primitives under which the large firm chooses the safe
profile in the absence of interventions, the large firm chooses the safe profile
also in the presence of interventions.

Since the risk profile is chosen before the network is formed, the large firm can
choose the safe profile αL to induce small firms to form links with itself. The
collective behavior of small firms can discipline large firm’s risk taking by using
the collective threat of not forming links with the large firm. In AOI, stakes of
the large firm are low. If it chooses the safe profile, it gets dL links. If it chooses
the risky profile, it can not obtain any links but it has high upside, for the
relatively small private investment. In POI, stakes are high for the large firm.
If it choose the safe profile, it gets n− 1 links. If it chooses the risky profile, it
can not obtain any links but has high upside, for the relatively small private
investment. Therefore, if it were optimal to engage in moral hazard in POI,
then it would also be optimal in AOI. But the converse is not true. Under
second-order network hazard, this compensating force mitigates individual
moral hazard in risk taking. Interventions, by mitigating SCR, increase the
potential stakes of the large firm significantly, which allows small firms to the
to discipline the large firm’s risk taking. More discussions of this section can
be found in Appendix B.2.5.

Finally, we summarize Section 4 in Figure 9.

5 Regulation and phase transitions
So far, we have discussed the effects of ex-post interventions. Now we under-
take a positive analysis of the effects of ex-ante interventions. Such interven-
tions can take the form of taxes for firms or capital and liquidity requirements

23Small firms can also be allowed to choose between two profiles but this choice does not
interact with interventions and network hazard. We skip this extension to save space.
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Figure 9: Summary of channels and insights
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for financial firms. These are interventions that, in spirit, alter the value of
exposures and put constraints on total exposures. We illustrate that smooth
changes in the intensity of such ex-ante interventions can potentially lead to
discontinuous changes in the network structure.

Consider two parameters that govern ex-ante interventions: ψE on exposures
and ψ′P on payoffs, described as follows. Firm i has a bound on its exposures
ei ≤ ψEe during network formation. This is in the spirit of capital and liquidity
requirements, as studied by Erol and Ordoñez (2017). Firm i’s continuation
payoff PCi is altered by ψ′P as −(eiri + pi + zi) + (1 − ψ′P )θG(pi + ei − ηici).
The parameter ψ′P can be seen as a tax on the revenue of the firm. Our task
here is to understand how the network reacts to changes in ψE and ψ′P .24

Assumption 5. (For simplicity) All firms are identical and zi = pi = 0 for all
firms. Shocks are correlated as follows. There are two states. High state has
probability σ, wherein shocks are i.i.d., good with probability α. Low state has
probability σ′ = 1− σ, wherein shocks are i.i.d., good with probability α′ < α.

We work with Assumption 5 in this section. Since all firms are identical, we
can drop the subscripts. Denote ψP = 1

η
− r

(1−ψ′P )θGη
. Then the continuation

24Such ex-ante interventions are relevant in other applications as well. For example Erol
and García-Jimeno (2019) study how the social structure changes under a coercive govern-
ment when the government increases the intensity of its surveillance methods.
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payoff of i is
− (eir + z) + (1− ψ′)θG(p+ ei − ηci)

∝
(

1
η
− r

(1− ψ′)θGη

)
︸ ︷︷ ︸

=:ψP

ei − ci −
(

z

(1− ψ′)θGη
− p

η

)
︸ ︷︷ ︸

0

= ψP ei − ci
Notice that if ψP > 1 − α′, links are positive NPV in both states. If ψP ∈
(1− α, 1− α′), links are positive NPV in the high state and negative NPV in
the low state. If ψP < 1− α, links are negative NPV in both states.

The unconstraint value function is V (d;ψP ) = Eb[[ψPd − b]+] where b ∼
σ ◦B[d, 1−α]⊕σ′ ◦B[d, 1−α′]. The optimal degree of a firm is d∗(ψE, ψP ) :=
arg maxdw≤ψEe V (d;ψP ). Our task is study how the exposures of firms, d∗(ψE, ψP )w,
change in response to regulation parameters ψE and ψP ? Figure 10 illustrates
the discontinuous changes.

Figure 10: Network reactions to regulations: phase transitions
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Figure 10-a shows the discontinuous fall in exposures as the exposure regulation becomes
more stringent. As ψE falls the exposure bound starts binding and exposures start falling
smoothly. Then at a sharp cutoff, exposures fall discontinuously. Figure 10-b shows the
discontinuous fall in exposures as the payoff regulation becomes more stringent. Notice
that Figure 10-b ranges over a tight interval 0.085 to 0.095. Above 0.095, the exposure
bound binds. Around a cutoff, exposures fall smoothly. At the cutoff, the fall is
discontinuous. The values used here are σ = 0.3, α = 0.9, α′ = 0.85, e = 600, w = 1.
ψP = 0.09 is fixed for Figure 10-a and ψE = 5/6 is fixed for Figure 10-b.

Phase transitions are prevalent in networks. In endogenous economic networks,
one might think of such sharp reactions as “bang-bang” results. This is wrong
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in our case. In order to understand why, take a closer look at V :
V (d;ψP ) = σαEbh

[[ψPd− bh]+]︸ ︷︷ ︸
Vh(d;ψP ) in high state

+ σ′α′ Ebl
[[ψPd− bl]+]︸ ︷︷ ︸

Vl(d;ψD) in low state

where bh ∼ B[d, 1−α] and bl ∼ B[d, 1−α′]. Call Vh the high state component
and Vl the low state component of V . V is typically bimodal with two local
maxima. Call the smaller mode d̃l(ψE, ψP ) and the higher mode d̃h(ψE, ψP ).
d̃l is close to the maximizer of Vl and d̃h is close to the maximizer of Vh. Figures
11 and 12 illustrate the shape of V and the forces behind phase transitions.

Figure 11: Phase transition in exposure regulation ψE

e/w
d

V (d;ψP )

Regulation gets tighter (ψE goes down)

d∗(ψE , ψP ) falls
from d̃h to d̃l

tipping point ψ?
E

(ψ?
E := wd?/e)

d?

ψE = 1ψE = 0

V is typically bimodal. The dashed line is the exposure constraint induced by the exposure
regulation. As the regulation gets tighter, the dashed line shifts left. Until the constraint
hits d̃h, the larger local maximizer V , the constrained optimal degree is d̃h. Then the
exposure constraint binds and the exposures start falling smoothly, given by the constraint
itself. At a tipping point, the constrained optimal degree falls discontinuously to d̃l, the
smaller local maximizer of V , as the value at the constraint becomes lower than the value
at the lower local maximizer.

For the transition in exposure regulation ψE, consider the illustration in Figure
11. Fix ψP and vary ψE. d∗ is given by min{d̃h, ψEe/w} = ψEe/w for large ψE.
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Figure 12: Phase transition in exposure regulation ψP
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As the payoff regulation ψP gets tighter, the shape of the objective function V changes. The
local maximum of V associated with the high state is more sensitive to ψP then the local
maximum associated with the low state. At a cutoff, the global maximum switches from
the right-hand side local maximum to left-hand side local maximum. At this point, optimal
exposures fall discontinuously.

As ψE falls, d∗ falls smoothly. As regulation gets tighter and ψE gets smaller, at
the tipping point ψ?E, d∗ falls discontinuously from min{d̃h, ψEe/w} = ψEe/w

to min{d̃l, ψEe/w} = d̃l due to the constraint. This is clearly not a bang-
bang result. It is a consequence of bimodality, which is a consequence of the
aggregate uncertainty.25

The transition in payoff regulation ψP is more subtle. Consider the illustration
in Figure 12. Fix ψE and vary ψP . The channel is similar to the transition in
ψE but has an extra element. As regulation gets tighter and ψP gets smaller,
the local max V (d̃h;ψP ) falls faster than the local max V (d̃l;ψP ). This is
because is d̃h > d̃l and α > α′, which makes Vh more sensitive to ψP than Vl

25Note that Erol and Ordoñez (2017) also study such exposure regulations but their phase
transition is not a consequence of aggregate uncertainty.
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is. As ψP falls, at the tipping point ψ?P , V (d̃h;ψP ) falls below V (d̃l;ψP ) and d∗

falls from d̃h to d̃l. This also is due to the bimodality, which is a consequence
of aggregate uncertainty.

6 Conclusion
We have presented a simple model of firms that expose themselves to the de-
fault risk of their counterparties by making joint investments. We have shown
that firms protect themselves against contagion by forming network that have
high clustering and low concentration. In the presence of interventions, conta-
gion is mitigated by interventions which reduces the concern that firms have
for the counterparties of their counterparties. Then the resulting network has
low clustering (more interconnected) and high concentration. In turn, idiosyn-
cratic risks of large firms at the center of the network create systemic risk and
aggregate volatility. Surprisingly, moral hazard on risk-return dimension is
mitigated because peripheral firms can discipline the central firms’ risk tak-
ing by the threat of exclusion. Ex-ante regulations to curb network hazard
might entail discontinuous network reactions. The key channels and insights
are applicable to a broader set of applications that feature network games with
complementarities.
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A Stability, contagion, and interventions
Section A.1 describes a general framework for contagion and resulting payoff
for a given network. Section A.2 establishes a mapping between contagion
and network games. Section A.3 discusses applications and interpretations.
Section A.4 describes stable networks for various notions of stability. Section
A.5 studies interventions and their impact on network formation.

A.1 Model of contagion
Network: There is a finite set of agents N = {1, 2, ..., n} with exposures to
each other. The exposure of i to j is eji ∈ R≥0. The network is e = [eij]i,j≤n.
We take eii = 0. Denote eouti = ∑

j eij (the sum of exposures to i), eini = ∑
j eji

(the sum of exposures of i), and ei = (eouti , eini ).

Shocks: Agents first receive shocks. These shocks can be good or bad. Denote
θi ∈ Θi = {θGi, θBi} the shock to i. θGi is the good shock and θBi is the
bad shock. We also call agent i good/bad when θi is good/bad. There is an
aggregate shock ω ∈ Ω. Shocks of agents are independent conditional on ω.
i gets a good shock with probability αi (ω) ∈ [0, 1]. No agent is guaranteed
either a good shock or a bad shock: Eω [αi (ω)] ∈ (0, 1) for all i.

Contagion: After shocks, contagion starts and progresses as follows. Agents
with bad shocks default. If defaults on a good agent exceeds a threshold,
he also defaults. Defaults are irreversible and contagion progresses round by
round. Formally, index rounds of contagion with t ≥ 0. Denote ait = 1 if agent
i defaults at or before round t and ait = 0 otherwise. At round t = 0, bad
agents default. A good agent i defaults at round t+ 1 if he has not defaulted
before and cit := ∑

j ejiajt > Ri(ei). Here Ri is the the resilience function of i.
When no new agent defaults for the first time, say at t = t∗, contagion stops.26

Outcome: Denote ai = ait∗ . We say i continues if ai = 0 and i defaults if
ai = 1. Denote ci = cit∗ , the total size of counterparty defaults on i. All in

26This generalizes the standard threshold contagion model to arbitrary weights, arbitrary
threshold functions, and arbitrary shock distributions. See Granovetter (1978) and Centola
and Macy (2007).
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all, at the end of contagion, i continues if and only if i is a good agent and
ci = ∑

j ejiaj ≤ Ri(ei).

Payoffs: If an agent i defaults, he receives a payoff PDi(ei) that does not depend
on counterparty defaults. If he continues, he receives a payoff PCi (ei, ci) that is
weakly decreasing in the size of counterparty defaults ci. We assume PDi (ei) ≤
PCi (ei, Ri (ei)) and PDi(ei) < PCi(ei, 0) so that defaulting is not desirable. In
shorthand, i’s payoff is

Pi(ei, ci) = PDi(ei) + [PCi(ei, ci)− PDi(ei)]1ci<Ri(ei) (2)

Remark: For most of the following results, the payoff and resilience of i can
also depend on the aggregate shock ω and the individual shocks to counter-
parties of i.

A.2 Game theoretical foundations of contagion
Notice that Pi and Ri are two separate primitives of the model. Contagion
is governed by Ri, not necessarily the resulting payoffs Pi. In our simplified
model, Ri was given by the threshold at which PCi falls below PDi:

Ri (ei) = max {c : PCi (ei, c) ≥ PDi (ei)} (3)

When (3) holds, an alternative way to formulate contagion is via a network
game of complementarities.27 Suppose that, in the contagion stage, agents
observe all shocks28 and play a simultaneous-move game and choose to continue
or default. A bad shock makes it strictly dominant to default. Agents with
good shocks best respond to their counterparties. If continuation yields higher
payoff, they continue. Then following the Tarski argument as outlined earlier,
the best equilibrium of this game corresponds to the outcome of contagion. In
this sense, our model encompasses a large class of binary network games.

27See Morris (2000), Galeotti et al. (2010).
28All results go through as long as agents observe the shocks to themselves and their

counterparties. Agent end up forming networks that makes the information about shocks
to non-counterparties redundant. See Section B.3.3 for details.
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A.3 Interpretations
Threshold contagion models are useful in a wide range of applications.29 Some
examples include the spread of behaviors and trust in communities in sociology
and political economy; joint projects and team production in industrial orga-
nization; product adoption in marketing; swaps, options, and diversification
in finance.30 Complementarities are the main force underlying these appli-
cations. For example, if majority of an agent’s friends start using a specific
messaging application, past a threshold, the agent can adopt this application
as well. Similarly for fashion trends or even political views, peer pressures
can lead to adopting a behavior past a certain threshold for adoption among
counterparties. Moreover, since our model does not require that Equation (3)
holds, it can also be useful to study behavioral forms of contagion.

Our insights are applicable to such scenarios but we pay closer attention to
economic networks and financial contagion given the significance of ongoing
discussions about systemic risk and bailouts. There are numerous examples
of financial contagion models that utilize threshold contagion.31 The particu-
lar manifestation of complementarity in financial networks is that an agent’s
profitability relies on whether his counterparties uphold their obligations or
not. These obligations can take many forms such as simple debt contracts or
derivative contracts for insurance purposes. If too many counterparties default
on the agent, his yields go down, potentially to a point that can render the
agent insolvent, resulting in his inability to uphold his obligations to other
agents. Defaults then cascade.

In Section B.1.2, we discuss why our model is appropriate to study various
instances of financial contagion. In doing so, we show how variants of three
existing models, Eisenberg and Noe (2001), Elliott et al. (2014), and Erol and
Ordoñez (2017), can be nested into our model. The main difference of our

29See Easley and Kleinberg (2010) and Jackson (2010).
30As Centola and Macy (2007) points out, threshold contagion models are in contrast

with independent cascades models. The latter is more appropriate for epidemics, rumors,
social learning, information transmission etc.

31Such as Aymanns et al. (2017), Amini et al. (2016), Cifuentes et al. (2005), Erol and
Vohra (2018), and more.
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model with existing counterparty-risk models is that contagion is binary. In
all existing models, when a counterparty j of an agent i defaults, this hurts i.
In our model, the number of counterparties of j that defaulted do not affect
i above and beyond making j default. This provides tractability for network
formation.

A.4 Stable networks

A.4.1 Stability

Before shocks are realized, agents evaluate a network according to the expec-
tation of their payoffs with respect to shocks, anticipating interventions and
contagion that follow.

There is a given non-negative weight matrix w = [w]i,j≤n. If i and j decide to
form a link, their exposures to each other are given by eij = wij and eji = wji.
If they do not form a link, their exposures are eij = eji = 0. We denote
{i, j} ∈ E whenever i and j form a link. The endogenous part of the network,
i.e. binary undirected links, is represented by E. If two firms i and j end
up forming a link, we call them counterparties. We denote Ni the set of
counterparties of i.

We assume that firm i’s exposures can feasibly be at most eini and the exposures
to i can feasible be at most eouti . We call Ni is feasible for i if eouti ≤ eouti

and eini ≤ eini . A network is called feasible if each firm has a feasible set
of counterparties. Consider a feasible network E and a subset N ′ of firms.
A deviation by N ′ from E is one in which N ′ can simultaneously add any
missing links within N ′, cut any existing links within N ′, and cut any of the
links between N ′ and N/N ′. A feasible deviation by N ′ is a deviation after
which the resulting network is feasible. Going forward, we will consider various
of notions of stability that preclude various feasible deviations. We define in
each notion before the corresponding result.

A.4.2 Preliminaries

Assumption 6. The exposures of agents depend on their own characteristic,
not their counterparties: for all i, there exists wi such that wji = wi for all
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j. The payoffs and resiliences of agents do not depend on exposures to them:
PDi, PCi, and Ri are constant in eouti .

This means that the preferences of i regarding the identities of i’s counterpar-
ties are driven only by their idiosyncratic risks of bad shocks and their default
risks due to their position in the network, not the intrinsic value of their links
to i. By abstracting away from differences in values of links, we can better
understand the impact shocks and contagion. In Section B.3.1 we relax this
and discuss the general case in which i’s payoff and resilience depend on the
exposures of i and the exposures to i.

Remark: Note that the results in Section 3.3 with the large firm do not satisfy
Assumption 6 unless wL = wS. So the results in Section 3.3 are not corollaries
of the general model herein. This model is more in general in the sense that it
allows for a large class of payoff and resilience functions than the linear forms
in the main body of the paper. Moreover, R and P do not need to be linked
to each other as in Equation (3).

We denote di = |Ni| the number of counterparties of i (namely the degree
of i), fi the number defaulting counterparties of i, and bi the number of bad
counterparties of i. Under Assumption 6, eini = diwi and ci = fiwi. Moreover,
the payoff and resilience does not depend on eouti . Then, with some abuse of
notation, we can use Pi(di, fi), PCi(di, fi), PDi(di), Ri(di) instead of Pi(ei, ci),
PCi(ei, ci), PDi(ei), Ri(ei), respectively. The ex-post payoff of i is

Pi(di, fi) = PDi(di) + [PCi(di, fi)− PDi(di)]1fi<Ri(di)

Let biω ∼ B [di, 1− αi (ω)], where B is the Binomial CDF. biω represents the
number of bad shocks to counterparties of i in state ω. Define the assortative
value function Vi as

Vi (di) = Eω
[(

(1− αi (ω))︸ ︷︷ ︸
bad shock default

+ αi (ω)Pbiω
[biω > Ri (di)]︸ ︷︷ ︸

contagion default

)
PDi (di) (4)

+ αi (ω)Pbi
[biω ≤ Ri (di)]Ebiω

[PCi (di, biω)| bi ≤ Ri (di)]︸ ︷︷ ︸
]

continuation with counterparty losses

Note that Vi(di) is not the expected payoff of i. Firstly because network effects
and contagion effect i’s expected payoff. Secondly, Vi assumes that shocks to

45

Electronic copy available at: https://ssrn.com/abstract=3034406



counterparties of i follow the same distribution with the shock to i. In fact,
Vi is the payoff of i if it were at the center of a disjoint star subnetwork with
agents that have the same shock distribution with i. Define the assortative
degree of i as d∗i := argmaxdiwi≤ei

Vi(di).32

Define Ti (di) := max {fi ≤ Ri (di) : PCi (di, fi) > PDi (di)}. This is the largest
counterparty default level that is costly for agent i. Notice that Ti ≡ bRic is
possible but not required. Accordingly, we call Ti the payoff threshold for i and
Ri the action threshold. As the number of counterparty defaults increase, after
the payoff threshold Ti, i does not incur any further losses. Distinguishing the
payoff threshold and action threshold is going to be helpful in interpreting the
effects of interventions described in Section A.5. Interventions will widen the
gap between the two thresholds.33 Denote ρ∗i = bRi (d∗i )c and τ ∗i = Ti (d∗i ).

A.4.3 Globally Stable networks

We first provide some results for the strongest solution concept we consider.
A network is globally stable (GS) if every agent achieves the highest payoff
that he can achieve in any feasible network, i.e. his first-best. Recall that
the notion of stability we have used in the simplified model is Pareto Efficient
Strong Stability (PESS), which is weaker than GS.

Assumption 7. There exists α : Ω→ [0, 1] such that αi (ω) ≡ α (ω) for all i.

Naturally, GS networks do not always exist. We relax Assumption (7) after
the we establish results for GS networks.

Theorem 1. Suppose that Assumptions 6 and 7 hold. A network E is GS if
and only if
• Every agent has its assortative degree: di = d∗i for all i,
• There is high clustering: (|Ni ∩ Nj| − τ ∗j )+ ≥ d∗i − 1 − ρ∗i for every
{i, j} ∈ E.

32We assume that Vi admits no indifferences over integers in order to rule out some
cumbersome indifferences. Note this is true for typical α,R, and P .

33In certain applications, the gap between Ri and Ti can also capture some behavioral
inertia before changing the social behavior.
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An agent i with degree di can not have more than Vi(di) expected payoff. Be-
cause it is subsumed under Vi that only bad counterparties default. Then the
globally maximal payoff of i is Vi(d∗i ) which can not achieved without the as-
sortative degree d∗i . Conditional on all agents having their assortative degrees,
agents must also eliminate SCR. It is not possible to make every agent the cen-
ter of a star subnetwork. The clustering condition characterizes when when
SCR is eliminated for all agents, given that all agents have their assortative
degrees. Roughly, the idea is that if j ∈ Ni has sufficiently many counterpar-
ties that are not counterparties of i, then there is an event in which i has less
than τi bad counterparties but j has more than ρj many bad counterparties.
At this event, j’s action threshold is exceeded and he defaults despite being a
good agent. This entails a cost for i since the i’s payoff threshold is not yet
exceeded. The sufficiency is more elaborate and uses cohesiveness a la Morris
(2000).

There are various network structures that satisfy these conditions. Consider
identical agents for illustration (and drop the subscripts). Each must have
degree d∗ and so the network must be d∗-regular. It can not be any d∗-regular
network though. Every two agent i and j who are counterparties must have at
least d∗ − 1 − (ρ∗ − τ ∗) many common counterparties. For example, one can
construct components with d∗+ 1 + ρ∗− τ ∗ agents that satisfy the conditions,
which are not cliques if ρ∗− τ ∗ > 0. Also, if ρ∗− τ ∗ ≥ d∗/2, then a (d∗/2)-ring
network is GS. Note that this is a connected network. Our results differs from
the literature that find cliques. The main force here is clustering.

A.4.4 Application to network games

In network games, the best Nash equilibrium requires that the payoff threshold
T and the behavior threshold R are identical. Then Theorem 1 has a sharper
prediction about the topology of the network. High clustering takes an extreme
form of full clustering.

Now τ ∗i ≡ ρ∗i . Call an agent i contagious if ρ∗i < d∗i − 1 and non-contagious if
ρ∗i ≥ d∗i − 1. Call two contagious agents i and j contagion-similar if d∗i = d∗j

and ρ∗i = ρ∗j . Notice that contagion-similarity is an equivalence class.
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Theorem 2. Suppose that Assumptions 6 and 7 hold. For network games
(T ≡ R), a network is GS if and only if
• Every agent has its assortative degree: di = d∗i for all i,
• Non-contagious agents are counterparties with only non-contagious agents,
• Contagious agents form disjoint cliques each of which consists of contagion-
similar agents.

It is important to highlight the idea that cliques are important only up to
providing clustering. In network games wherein the resilience is induced from
payoffs, the need for clustering takes the extreme form of inducing disjoint
cliques.

A.4.5 Pareto Strongly Stable networks

When the probability of shocks differ across agents, GS networks are not pos-
sible to obtain. All agents want to form links with the least risky agents. This
creates a tension across agents. In this case we can restore results by resorting
to weaker solution concept. A network is Pareto Strongly Stable (PSS) if no
subset of agents have a feasible deviation that Pareto improves the deviating
set. Under PSS, one would expect that least risky agents with form links with
each other and so agents will get sorted with respect to how risky they are as
counterparties for other agents. In order to establish such a result, we assume
that agents can indeed be ranked with respect to their idiosyncratic risk.

Assumption 8. For every ω, ω′, i, j, we have αi (ω) ≥ αj (ω) if and only if
αi (ω′) ≥ αj (ω′).

For example, there can be some underlying aggregate risk level α (ω) such
that agent i’s exposure is altered by its own risk characteristic si ∈ (0, 1) as
αi (ω) = siα (ω). The ranking of si’s then determine the risk ranking of agents.

Call two agents i and j risk-similar if αi ≡ αj. Call i and j similar if they are
contagion-similar and and risk-similar. Notice that these are all equivalence
relations. Index the equivalence classes induced by similarity with ι. Let nι
be the number of agents in the equivalence class ι.
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Theorem 3. Suppose that Assumptions 6 and 8 hold.

A network E is PSS if
• Every agents has its assortative degree: di = d∗i for all i,
• There is high clustering: |Ni ∩Nj| ≥ d∗i−1−ρ∗i +τ ∗j for every {i, j} ∈ E.
• Each component34 of the network consists of risk-similar agents.

In network games (T ≡ R), a network is PSS if
• Every agent has its assortative degree: di = d∗i for all i,
• Non-contagious agents are counterparties with only non-contagious and
risk-similar agents,
• Contagious agents form disjoint cliques with similar agents.

If nι ≥ d∗ι + 1 for all ι, these are also necessary conditions for PSS.

Agents first get sorted with respect to their risk-similarity. Agents in the risk-
similarity class with the least risk form links with only each other and refuse
to form links with riskier agents. Given this, agents in the risk-similarity
class with the second least risk form links only with each other, refusing the
form links with riskier classes. This unravels and agents end up forming links
only with their own risk class. In network games, there is a second layer of
sorting inside each risk class due to the need for clustering. Agents also get
sorted with respect to resilience. Agents with high resilience prefer to match
with agents that have high resilience. This also unravels and agents end up
forming links only with their own class. Also, as before, cliques emerge for the
case of network games. Once again, this stresses the idea that the main force
is clustering, not the disconnected nature of the cliques that emerge under
network games.

A.4.6 Approximate Strong Stability and general existence

One might worry about the condition nι ≥ d∗ι + 1 in Theorem 3. When
nι ≤ d∗ι , agents can not eliminate SCR. Then they need to solve tradeoffs
between first-, second-, and even third-order counterparty risks. In this case,
even Strongly Stable (SS) networks need not exist, which is shown by an

34A component is a disjoint but connected subnetwork.
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example in Section B.3.2. Nevertheless, perhaps under some restrictions on
payoff and resilience functions, some results could be obtained. But, as long as
these assumed functional forms do not take trivial forms that readily eliminate
contagion, the tradeoffs between various orders of counterparty risks must be
solved. Hence, presumably, there will be SCR in the network formed. Then,
in order to solve for the tradeoffs between FCR and SCR, one first needs be
able to establish existence of networks that has a specified second-order degree
sequence (i.e. the ordered multiset of the numbers of vertices at distance 1 and
2 from each vertex). Note that the second-order degree sequence problem is
a simpler problem than finding stable networks, and potentially much simpler
since it does not entail resolving the tradeoffs between FCR and SCR. The
being said, the second-order degree sequence problem is an open problem in
graph theory. Erdős and Miklós (2016) show that it is strongly NP-complete.

Our broader solution to this challenge is to consider an approximate version of
strong stability. This way small tradeoffs in high orders of counterparty risks
can be ignored. Then, even if no two agents are similar to each other, we can
restore existence. In this sense, our insights do not depend on any form of
symmetry neither in terms of shocks nor in terms of payoffs.

Given any ε > 0, a network is ε−Strongly Stable (ε-SS) if there exists a subset
of agents Nε such that |Nε| > n(1 − ε) and no subset of Nε has a feasible
deviation in which all members can improve their payoff by more than ε. Note
that GS ⊂ PSS ⊂ PESS ⊂ SS ⊂ ε-SS.

Assumption 9. There is a uniform bound e <∞ on degrees such that ei ≤ e

for all i. There is some α such that for all i, αi (ω) = siα (ω) where si ∈ (0, 1)
is the risk type of i.35 si is independently drawn from a uniform distribution
si ∼ U [s, s] where 0 < s < s < 1. There is some P̃ and R̃ such that for all
i, Pi(·) ≡ P̃ (·; qi) and Ri(·) ≡ R̃ (·; qi).36 Here qi is called the contagion-type
of i and it is independently drawn from some arbitrary distribution with an

35The essential feature of the shock specification is that Assumption 8 is satisfied: agents
can be ranked with respect to their idiosyncratic risks.

36For example, one can consider a linear form under network games (along the lines of
the lead example): P̃i (di, fi; qi) = (qidi − fi)+ and R̃i (di; qi) = qidi.
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arbitrary support. For each i, the risk-type si and contagion type qi are drawn
prior to network formation and they are publicly observed.

Under Assumption 9, with probability 1, no pairs of agents are risk-similar
(nι = 1).

Construction: For all (d, ρ) ∈ C :=
{

(d, ρ) ∈ Z2
+ : ρ ≤ d ≤ e

}
, denote N(d,ρ) =

{i ∈ N : d∗i = d, bRi(d∗i )c = ρ}. Call each N(d,ρ) a contagion-class (these are
the equivalence classes with respect to contagion-similarity). Note that C is a
finite set since e <∞. So there are finitely many contagion-classes. For each
contagion-class N(d, ρ), sort all agents in the contagion-class with respect to
their risk types. Construct bins of d+1 agents in descending order with respect
to risk type. Make agents in each bin form a disjoint clique. Each agents in
a contagion class N(d,ρ) are sorted into cliques of order d + 1, there can be
at most d agents left as residuals. Residuals can form arbitrary links among
themselves.

This construction results in cliques of various sizes, each of which consists
of agents from the same contagion-class and all have close risk type to each
other. There is also some residual from each contagion-class. For large enough
n, the residual agents make up a vanishing fraction of agents. The construction
mimics the earlier sorting and matching arguments.

Theorem 4. Suppose that Assumptions 6 and 9 hold. For all ε > 0, there
exists n such that for all n > n, the Construction yields an ε-SS network with
probability 1.

We illustrate with an example. Suppose that P̃i (di, fi; qi) = (qidi − fi)+ and
R̃i (di; qi) = qidi where qi is independently drawn from U [q, q] for some 0 <

q < q < 1. Under this specification, a potential link {i, j} is positive NPV
for i if qi + αsj > 1. Similarly, it is positive NPV for j if qj + αsi > 1. Yet,
there is an upper bound on the degree that each agent can have, and so agents
can not typically form links with all potential positive NPV counterparties.
Each agent prefers to form links with the least risky agents, i.e. those with
the largest s. But then, agents with highest s prefer to match with each other
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first, provided that they will not generate SCR for each other. Sorting with
respect to risk type unravels and all agents end up being counterparties agents
with close-by risk types s. Moreover, in order to eliminate SCR, agents want
to form cliques. Yet each agent also wants to have their desired degree. This
requires assigning agents with close-by contagion type q to the same cliques
so that there is no conflict in terms of their desired clique size. The resulting
size of cliques are as follows. For agent i, if qi +αsi > 1, then Vi is increasing.
Then the clique of i has e+1 agents. If qi+αsi < 1, Vi has a finite maximizer.
Then i’s clique has 1 + min{arg maxdi

Vi(di), e} agents. Note that this can be
as small as 2 if qi and si are sufficiently small.

A.5 Interventions and network reactions
Consider a principal who can intervene with contagion. Interventions can
take many forms. These can be “soft interventions” that use transfers to in-
duce strategic agents into continuation, such as bailouts and subsidies to firms,
compensation to influencers in marketing, etc. Interventions can also be “hard
interventions” without strategic components of contagion, such as a an oppres-
sive government arresting opposers, medicine to cure a disease, or quarantining
an area to stop the spread. Moreover, in certain applications, transfers that are
conditional on continuation actions can be appropriate whereas in some such
commitment may be infeasible. For example, in team production in industrial
organization, the principal can be a manager trying to incentivize high effort
and leverage synergies across workers. But the firms can engage in moral haz-
ard and shirk, despite receiving a transfer. This requires a mechanism design
approach and conditional transfers. In marketing and product adoption, the
principal can be a brand that is promoting its product against a rival product
by purchasing endorsements from social influencers. Then the transfers would
be pinned down in a contract and would occur only if endorsement takes place.

Given the variety of scenarios, we take a simple approach. We suppose that
the principal can induce good agents to continuation without a cost, which
we call “saving.” Solely to reduce the length of the analysis, we assume that
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bad agents can not be saved.37 For the objective of the principal, we turn to
our simplified model for guidance. Suppose that there is a positive function
λi such that the objective of the principal, after shocks and before contagion,
is given by

W =
∑

i continues
(λi(di)− fi)

Denote NG the set of good agents. For a collection of positive functions (ζi)i∈N
and two subsets of good agents N ′, N ′′ ⊂ NG, we say N ′ is ζ−cohesive relative
to N ′′ if |Ni\N ′′| ≤ ζi(di) for all i ∈ N ′. Clearly, the union of two sets that
are ζ-cohesive relative to N ′′ is also ζ−cohesive relative to N ′′. Denote Nζ,N ′′
the largest set N ′ that is ζ-cohesive relative to N ′′.

We say N ′ is ζ-cohesive if N ′ is ζ-cohesive relative to itself N ′. Notice that
union of two ζ-cohesive sets is also ζ-cohesive. Then the union of all ζ-cohesive
sets define the maximally ζ-cohesive set, which we denote Nζ . For example,
in the absence of interventions, the set of agents who continue is characterized
by NR (a la Morris (2000)).

Denote R′i(di) = λi(di)+di

2 . We will assume that R′i(di) > bRi(di)c for all i and
di, meaning that the principal does not prefer that a continuing agent would
default instead.

Theorem 5. Suppose that Assumption 6 holds and R′i(di) > bRi(di)c for all i
and di. The optimal policy is to save all agents in NR′\NR,NR′

. Consequently,
NR′ continues and the rest of agents default.

Inducing a cohesive set to continue is relatively easier than inducing disjoint
sets to continue. This is because of the complementarities across agents during
contagion and complementarities embedded in the objective of the principal.
Saving an agent makes his counterparties more “worthy” of saving. Given
the objective function, it is optimal that the set NR′ continues and the rest
defaults. In this case, NR,NR′

does not need saving because their resilience is
37Counterparts of results for the case in which bad agents can be saved are available upon

request.
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not exceeded by the agents outside NR′ . The rest of the agents in NR′ need
saving.

This intervention policy can be thought of as a dynamic “counter-contagion.”
Suppose that at the first round of contagion, the principal saves all good agents
i who have less than R′i(di) but more than Ri(di) bad counterparties. Those
who have more than R′i(di) many bad counterparties are not saved and they de-
fault. Then in the second round of contagion, given all bad agents and the good
agents who have not been saved default, agents i who have more than Ri(di)
but less than R′i(di) many defaulting counterparties are saved, and those who
have more than R′i(di) many defaulting counterparties default. The iteration
stops at the point where NR′ continues and the rest defaults. This algorithm
can tractably pin down the optimal intervention policy in computations.

This argument makes it clear that the role of the interventions is to shift the
resilience functions up from R to R′ while keeping the payoff functions P and
the payoff threshold T the same. The networks that are formed in POI can
be found simply as corollaries of Theorems 1, 2, and 3. The only difference is
that the clustering condition

|Ni ∩Nj| ≥ d∗i − 1− ρ∗i + τ ∗j

is replaced with a looser version:
|Ni ∩Nj| ≥ d∗i − 1− ρ′∗i + τ ∗j

where ρ′∗i = bR′i (d∗i )c. The effect of interventions is mitigate SCR (not elim-
inate) which loosens the collective discipline and reduces clustering. Once
SCR is mitigated by interventions, agents can eliminate the remaining SCR
with less clustered networks. In the particular case of network games, one has
T ≡ R, leading to full clustering. Then interventions bring effective resilience
from T ≡ R up to R′, but keeps the payoff threshold T ≡ R the same. The
cliques dissolve into less clustered network. In the case of our lead example, all
good agents were saved because we had R′(di) > di, meaning that NR′ = NG.
This lead to an arbitrary regular network. In general, the effect is to reduce
clustering.

Similar arguments apply for a counterpart of the Construction and Theorem
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4. We skip this to save space. It is also worth noting that if we relax the
requirement in Assumption 9 that e < ∞, one can show that the ε-SS net-
works feature concentration. Anticipation of intervention result in increased
the concentration as was the case in our simplified model. This establishes
the counterparts of results in Section 3.3. We leave this to future work as it
deserves a lengthy analysis.

B Relegated discussions and extensions
Here we provide the discussions that have been relegated. Section B.1 is for
the related literature, Section B.2 is for the simplified model, and Section B.3
is for the general model.

B.1 Discussions regarding the literature

B.1.1 Related literature on networks

There is a growing number of recent work regarding contagion and systemic
risk in economic networks. Eisenberg and Noe (2001), Acemoglu et al. (2012),
Elliott et al. (2014), Acemoglu et al. (2015a), Baqaee (2018), Cabrales et al.
(2017) all have different focuses and models to study contagion on fixed net-
works. Our model does not overlap with any of these but it shares common
features with them, most importantly, the complementarities during conta-
gion. Erol and Vohra (2018) and Elliott et al. (2018) are the closest to ours
in terms of network formation. They find highly clustered networks but they
do not have interventions. We also find high clustering but we also establish
concentration results and study how these interact with interventions and reg-
ulations. For fixed networks, Leitner (2005), Bernard et al. (2017), and Kanik
(2018) study bailouts and bail-ins (banks saving each other). They build on
different models and they do not consider network formation. Kanik (2018)
also finds that contagion is stopped either at the source (the location of the
bad shock) or in the next round of contagion before it spreads.

Relative to network theory at large, this paper contributes to the literature
on network games and diffusion. Applications include the cascading defaults
of industrial and financial firms; the spread of cultural fads; the adoption of
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new products, platforms, political views, etc (see Jackson (2010)). In this
literature, Morris (2000) and Galeotti et al. (2006) study network games for
fixed networks. Galeotti et al. (2018) study optimal interventions for a given
network. Blume et al. (2011) studies endogenous networks under contagion
risk. This paper is the first to study network games under interventions for
endogenously formed networks. It characterizes strongly stable networks under
a general binary network game framework with arbitrary and heterogenous
payoff functions under interventions.

Besides these, Papers that study systemic risk given exogenous networks in-
clude Allen and Gale (2000), Eisenberg and Noe (2001), Kiyotaki and Moore
(1997), Acemoglu et al. (2010), Allen et al. (2012), Blume et al. (2011), Ca-
ballero and Simsek (2013), Eboli (2013), Elliott et al. (2014), Freixas et al.
(2000), Gai and Kapadia (2010), Gai et al. (2011), Gale and Kariv (2007),
Gottardi et al. (2015), Glover and Richards-Shubik (2014), Gofman (2011),
Gofman (2017), Kiyotaki and Moore (2002), Vivier-Lirimonty (2006), Ace-
moglu et al. (2015b), Elliott et al. (2014), and Glasserman and Young (2015).
Some that study the efficient ways of stopping contagion for fixed networks
are Drakopoulos et al. (2015), Freixas et al. (2000), Minca and Sulem (2014),
and Amini et al. (2015). Moreover, Acemoglu et al. (2015b), Goldstein and
Pauzner (2004), Moore (2011), Cabrales et al. (2017), Babus (2016), Blume
et al. (2013), Kiyotaki and Moore (1997), Lagunoff and Schreft (2001), Za-
wadowski (2013), Farboodi (2015), Babus and Hu (2017), Chang and Zhang
(2016), and Wang (2016)study the formation of networks.

Our theory uses threshold contagion models and strongly stable networks.
Strong stability was introduced in Dutta and Mutuswami (1997) and Jackson
and Van den Nouweland (2005). As they note, strongly stable networks often
do not exist, but when they do, they have nice properties. We character-
ize variations of strongly stable networks under contagion risk. Most notably
we introduce ε-Strong stability that yields existence under arbitrary levels
of heterogeneity. Regarding contagion and network games Morris (2000)
considers a simpler version of contagion under homogenous agents and intro-
duces the notion of cohesiveness. He shows that cohesiveness can be used to
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pin down the outcome of contagion. We generalize cohesiveness concept to
arbitrary levels of heterogeneity, and study network formation as well as in-
terventions. We find that agents form clustered networks that increases the
chances of belonging to a cohesive set. We also make use of cohesiveness in
identifying optimal interventions in our general theory. The optimal interven-
tion takes the form “dynamic” counter-contagion, which induces an optimally
sized cohesive set to resist contagion. Galeotti et al. (2010) consider gen-
eral network games with arbitrary payoff functions and action spaces. Impor-
tantly, they consider agents who are incompletely informed about the network
structure. They identify various effects of changing the network. We do not
consider incomplete information but we provide stability results. Related to
network formation, Goyal and Vega-Redondo (2005) consider a network for-
mation problem with additive payoffs across links with homogenous agents. In
case of a unilateral link formation game with no uncertainty in payoffs, they
find that an empty network, a complete network, or a network that consists
of two cliques is formed, depending on the cost of links. Galeotti et al. (2006)
study non-cooperative network formation with heterogenous agents along the
lines of Bala and Goyal (2000). They have additive payoffs and their focus is
the direct value of links instead of a game played on the network. They find
that short average distances and centrality are features of networks formed.
Our findings are consistent with this insight. Erol and Vohra (2018) consider
additive payoffs with uncertainty in the benefits that are derived from links
with homogenous agents, and they show that if the behavior is very conta-
gious, the unique strongly stable network consists of disjoint cliques. Using
our framework for binary network games and contagion, we study strongly sta-
ble networks (neither unilaterally formed links nor pairwise stable networks),
under any payoff function (not necessarily additive), any threshold rule (nei-
ther necessarily linear nor necessarily very contagious), uncertainty regarding
nodes (not edges), under arbitrary levels of heterogeneity (not homogenous).
Regarding interventions, the most related work is by Galeotti et al. (2018) who
study interventions with network games with complementarities. They do not
consider network formation. Their network game has continuous actions with
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a quadratic utility function and the principal has a budget constraint. Our
network game is binary and the principal does not face a budget constraint.
This simplicity in our paper allows us to characterize strongly stable networks
with arbitrary and heterogenous payoff functions.

B.1.2 Threshold contagion in financial networks

As described in the introduction, the key difference of our model with existing
counterparty risk models is that in our model contagion spreads only via bi-
nary defaults of counterparties, not the particular circumstances under which
default occurred. The size of a bad shock does not affect contagion because
the losses are incurred by external creditors. This buys tractability which en-
ables us to provide characterization of stable networks. Next we discuss how
simplified versions of some existing models of counterparty risk can be nested
into our framework.

Eisenberg and Noe (2001) The first example is a variant of Eisenberg and
Noe (2001) as follows. Banks have liabilities to external creditors whose claims
have seniority over interbank claims. The external cash flow to each bank is
either high (good shock) or low (bad shock). Low external cash flows do not
suffice to pay the liabilities to external creditors. Then a bad bank can not
repay its liabilities and goes bankrupt. Due to the seniority structure, its
counterparties recover zero from the defaulting bank. Contagion is triggered
by these low external cash flows. If a bank with a high external cash flow
suffers a large number of counterparty defaults, its fulfilled interbank claims are
reduced to a point that it can not pay its liabilities and it defaults. Assuming a
sufficiently small default recovery rate, such as high fire-sale costs, a defaulting
bank can only partially repay its external creditors. The counterparties of
the defaulting bank recover zero from the defaulting bank. Then defaults
propagate through interbank liabilities via contagion dynamics described in
our model. The only difference with the standard Eisenberg and Noe (2001)
model is the high bankruptcy cost.

Erol and Ordoñez (2017) The second example is Erol and Ordoñez (2017)
who study banks that rely on each other to meet their short-term liquid-
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ity needs via interbank lending partnerships. Banks have dividend yielding
projects that have potential future refinancing needs. A bad shock means
large operational costs or large withdrawals of demand deposits that force the
bank into liquidating its dividend yielding project. Then a good bank with
many defaulting counterparties may find that it costly to raise liquidity on de-
mand in the future. Such expected illiquidity can render an otherwise healthy
bank unlikely to meet the refinancing needs of its project, which can incen-
tivize the liquidation of its project to avoid opportunity costs or management
costs. These liquidations propagate through interbank lending partners.

Elliott, Golub and Jackson (2014) Our final example is related to Elliott
et al. (2014). Suppose that each bank has one pledgable and one non-pledgable
asset. Liabilities are larger than the size of the non-pledgable asset and the
size of the pledgable asset. Hence, both assets must have high returns to
pay the liabilities. This creates incentives for banks to exchange tranches
of each others’ pledgable assets to diversify against bankruptcy costs (which
could potentially be the costly liquidation of a third illiquid asset). A typical
balance sheet is pictured in Figure 13.

Banks first get shocks to their non-pledgable assets and then to their pledgable
assets. A bank with a low return to its non-pledgable asset (bad shock) faces
immediate bankruptcy. This starts contagion. The tranches of the pledgable
asset of a defaulting bank generates low yield for the counterparties due to
fire-sale costs. These losses reduce the margin of diversification for the good
counterparties of bad banks. It becomes less likely that a good bank with
many defaulting counterparties have high enough yield from its remaining
counterparties that will suffice to pay its liabilities. This triggers defaults and
asset devaluations among good banks with sizable counterparty losses. Upon
defaults of good banks in the first round of contagion, more good banks suffer
counterparty losses and default. Contagion progresses via linkages across good
banks in this fashion.
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Figure 13: Balance sheet of bank i
Assets Liabilities

Non-pledgable
asset Liabilities

Pledgable
asset

(a) i has no counterparties

Assets Liabilities

Non-pledgable
asset Liabilities

Shares left
Shares from i′

Shares from i′′

Shares from i′′′

(b) i has three counterparties
Figure 13-a and -b show bank i’s balance sheet when it has no counterparties and three
counterparties, respectively. If bank i does not have any counterparties, its solvency relies
on high returns to both of its assets. If i diversifies its portfolio by exchanging tranches
of its pledgable asset with other banks, it needs high return to at least two out of four
tranches now owned. This increases the probability of avoiding bankruptcy costs. However,
if i’s three counterparties get low return to their non-pledgable assets and default before the
maturity of their pledgable asset, the tranches owned by i have low return and so i faces
bankruptcy regardless of the returns to its own projects.

B.2 Discussions and extensions regarding the simplified
model

B.2.1 Interventions with commitment

In an alternative situation where the government has the commitment at the
interim stage, injections could be made during defaults conditional on actions
taken. Suppose that the government, after shocks are realized and observed,
before contagion, can intervene and commit to transfers conditional on the
actions taken. Now the transfer to i is Qi (ai). Given transfer rule, payoff func-
tions are now PCi(ei, ci)+Qi (0) if i continues and PDi(ei)+Qi (1) if i defaults.
This alters the contagion in a different way than unconditional transfers.38 In
principal, firms with negative shocks can also be induced into continuation

38Transfer to i depends only on the action of i. This is without loss of generality. For
arbitrary transfer rules (Qi(a))i∈N , the induced game P + Q may not be supermodular.
Assuming that firms play the best Nash equilibrium whenever it exists and any arbitrary
selection among Nash equilibria otherwise, the optimal policy takes the assumed form in
which the transfer to i depends only on ai.
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under such conditional transfers. We call Q optimal if it maximizes welfare
and uses minimal transfers in doing so.

Suppose that shocks are bounded as follows. For all i, θBi < θB and θGi ∈
[θG, θG]. Here θG > θB, so bad shocks are not desirable. Also θG > 0 it is
efficient for good firms to continue the investments. We have two cases with
respect to (with respect to) sizes of bad shocks. As before, the first case is
small shocks: θB > 0. The second case is large shocks: θB < 0. We also
assume that exposures are not too uneven:

(
|θB |
θG

1
ηj

)
eji ≥ eij for all i and j.

Proposition 8. For small shocks the optimal policy is to save all bad firms.
Transfers are

Q∗i (ai) = [(piri + eiri + zi)− θi(pi + ei)]1θi=θBi,ai=0

For large shocks, the optimal policy is to save all good firms who are facing
default due to bad counterparties. Transfers are

Q∗i (ai) = [(piri + eiri + zi)− θi(pi + ei − ηibi)]+1θi=θGi,ai=0

It is efficient for good firms to continue their operations. If bad shocks are
positive, it is also efficient for bad firms to continue operations. In this case,
saving bad firms by ensuring that they can meet their liabilities is optimal
and they continue. This way, there is no need to save good firms because they
do not incur counterparty losses due to bad counterparties. If bad shocks are
negative and sufficiently small, then it is efficient for bad firms to default even
after considering the fact that saving them would reduce the counterparty
losses of others. The welfare loss by inducing bad firms to continue is larger
than the welfare gain of their counterparties. Instead, good firms are directly
saved via appropriate injections that make sure they can repay their liabilities.

B.2.2 Relegated discussions of Strong Stability

Strong stability is defined differently in Jackson and Van den Nouweland (2005)
and Dutta and Mutuswami (1997). In Jackson and Van den Nouweland (2005),
deviations that Pareto improve the coalition are precluded, whereas in Dutta
and Mutuswami (1997) deviations that strictly improve every member of the
coalition are precluded. To minimize confusion we use the name Pareto Strong
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Stability for Jackson and Van den Nouweland (2005) and Strong Stability for
Dutta and Mutuswami (1997).

The cooperative nature of the solution concept is necessary to capture some
notion of mutual consent for link formation. One can, in fact, micro-found
strongly stable networks as strong Nash equilibria of a link proposal game as
follows. Suppose that agents make proposals to their desired counterparties
at cost ε each. Links are formed for mutual proposals. If a link is formed, ε
is refunded to its proposers. Then in strong Nash equilibrium of the proposal
game, only links that are formed feature proposals. Then, given strong Nash
equilibrium network, no agent can form a link without a joint deviation with
the potential counterparty. However, every agent can cut an existing link in
the strong Nash equilibrium network by withdrawing the proposal. Therefore,
the Strong Nash equilibria of the game correspond exactly to SS networks.

This being said, we do not see strong stability as a positive description of how
networks are formed. Rather, it should be seen as a selection among other
weaker solution concepts, such as pairwise stability.

B.2.3 Relegated discussions of Section 3.2.1

Note that it is possible to have d∗w = e. If e is not small and links are negative
NPV, i.e. (1 − α)κ > 1, then d∗w < e. If, however, links are positive NPV,
i.e. (1 − α)κ < 1 or e is small, firms want to have as many counterparties
as possible. In this case, d∗w = e. But with a slight additional convexity
in the payoffs, this would not be the case anymore. Such convexity can be
the consequence of convex management costs, convex link formation costs,
or decreasing marginal returns from projects. We work with linear forms for
simplicity. The general theory allows for arbitrary functional forms. Under
such convexity, even with positive NPV links and large e, firms form less links
in AOI than in POI for small shocks. For large shocks, their degree, again,
does not change. The network becomes interconnected for either small or large
shocks.
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B.2.4 Relegated discussions of Section 3.3.2

Notice that the parametric assumptions governing the shocks must only sat-
isfy σαS + σ′α′S > α′S and αL >

σα2
S+σ′α′2S

σαS+σ′α′S
. The only lower bound imposed

on σ is σ > 0. That is, the correlation can potentially be arbitrarily small.
This sheds light on to the emergence of concentration in Section 3.3.1. There,
idiosyncratic shocks to the large and small firms had to have the same prob-
ability for the anticipation of interventions to increase concentration. In fact,
under arbitrarily small correlations, such a sharp restriction is not necessary
for increased concentration.

The correlation is helpful in addressing a typical criticism to financial net-
works. When links are positive NPV, it is argued that dividing institutions
into smaller pieces would diversify against the idiosyncratic risk and make the
network analysis redundant. This is not the case in our setup. Links are
positive NPV unconditionally, but they are negative NPV conditional on the
low state. Dividing firms into many smaller pieces only increases the expected
losses. This is reflected in the fact at most dL many small firms form links
with the large firm regardless of n.

We have taken φS = 0 and κS = 1 for tractability. Similar results hold as long
as φS < φL ensuring that the network is not fully concentrated around the large
firm in AOI. κS > 1 can induce the small firms to reduce their desired exposure
reducing the number of their links. Also, having one large firm is not critical
here. With multiple large firms that have correlated shocks, similar results go
through. If there are multiple large firms that have idiosyncratic shocks, small
firms face tradeoffs between first-, second-, and third-order counterparty risk.
Weaker solution concepts such as pairwise stability can be used in this case to
show that similar networks emerge as stable networks. But this comes at the
expense of uniqueness.

B.2.5 Relegated discussions of Section 4.3

First-order network hazard. The picture is different under first-order net-
work hazard. Recall that all bad firms are saved under small shocks (first-order
network hazard). Then in POI, in the unique stable network, all small firms
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form links with the large firm regardless of the timing of the risk profile choice
and the magnitude of α′L. This is not true in AOI. Therefore, first-order net-
work hazard exacerbates individual moral hazard in risk taking.

Alternate timing. Consider 1− 1
κL
< α′L <

σα2
S+σ′α′2S

σαS+σ′αS
< αL and suppose that

the choice of the risk-return profile is made after the network is formed. In
this case, small firms understand that whatever network is formed the large
firm will choose the risky profile. Then both in AOI and POI, small firms
abstain from forming links with the large firm. The network is not altered by
the anticipation of interventions. Furthermore, since the large firm does not
have any links in either case, it chooses the risky profile regardless. The large
firm engages in individual moral hazard. Yet moral hazard does not interact
with second-order network hazard.

Alternate parameters. If σα2
S+σ′α2

S

σαS+σ′αS
< α′L < αL, the large firm chooses the

risky profile in AOI and POI regardless of timing. The risk profile is fixed
and so all results in Section 3.3.2 hold. There is indeed more risk shifting on
to external creditors due to the choice of the risky profile, hence more moral
hazard. But moral hazard does not interact with second-order network hazard
and the network structure.

B.3 Discussions and extensions regarding the general
model

B.3.1 Heterogenous link benefits

We have worked with Assumption 6 implying that the preferences of i regard-
ing the identities of his counterparties only pertain to the default risk of his
counterparties and their network positions. In certain cases, the link to a par-
ticular agent j can be more valuable than links to other agents, above and
beyond the smaller exogenous default risk of j captured by αj. Heterogenous
values of links is not a force particularly relevant for contagion compared to
default risk and network position of agents, but we discuss it nonetheless.

Maintain the first part of Assumption 6 that there exists wi such that wji = wi

for all j. Now suppose that the payoff and resilience of i can depend on
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exposures to i, eouti = Σj∈Ni
wij = Σj∈Ni

wj. Assume that PCi, PDi, and Ri are
increasing (or decreasing) in eouti . Now, agents with higher (or lower) wj are
more preferred counterparties for i. Call wi the exposure type of i.

First consider symmetric with respect to their shocks: there is some α such
that αi ≡ α for all i (Assumption 7). Then, if exposure types are identical
for all pairs, GS networks are given by Theorems 1 and 2. If exposure types
are different, agents can be ranked with respect to their exposure type and
there will be assortative sorting and matching from the best type to the worst.
This yields PSS and ε-SS networks as in Theorems 3 and 4 (under appropriate
counterparts of Assumptions 8 and 9 for exposure types).

If risk types are heterogenous but the risk types and exposure types of agents
have the same ranking (in the spirit of Assumptions 8 and 9), version of
Theorems 3 and 4 can be restored by the same sorting arguments.

If the risk types αi and exposure types wi are all heterogenous and do not
admit a common ranking, then there are potential tradeoffs between the FCR
from a counterparty and the exposure type of the counterparty. We believe
the individual tradeoffs faced by counterparties of i between exogenous risk αi
of i and the exogenous link benefit wi of i are not particularly relevant for our
analysis of contagion and interventions.

B.3.2 Non-existence of SS in small networks

Suppose that there are three agents 1, 2, 3. Default payoffs are 0. Resilience
functions are Ri(d) ≡ d for all agents. The continuation payoffs are

P1,2 (c, d) =


2− εc if d = 2,

−εc if d = 1,

1− εc if d = 0,

P3 (c, d) =


1− εc if d = 2,

2− εc if d = 1,

−εc if d = 0.
for some small ε > 0. The deviations are described here and shown in Figure
14. 1 and 2 prefer having 2 links to 0 links to 1 link. 3 prefers having 1 link to
2 links to 0 links. In this situation there are no SS networks. The deviations
from each candidate network are illustrated in Figure 14. All agents jointly
deviate from G1 to G2. 3 deviates from G2 to G3. 2 deviates from G3 to G4.
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1 deviates from G4 to G1. 1 and 2 jointly deviate from G5 or G6 to G1.

1 2

3
G6

1 2

3
G5

1 2

3
G4

1 2

3
G3

1 2

3
G2

1 2

3
G1

Figure 14: Labels of networks and deviations

B.3.3 Incomplete information on shocks

Vives (1990) also shows that any Bayesian game with supermodular ex-post
payoff functions has a maximal pure strategy Bayesian-Nash equilibrium. Now
suppose that each agent observes the shocks to itself, its counterparties, and
possibly some other agents. Formally, i observes the shocks to a subset Ii(E,θ)
of banks that includes i and all counterparties of i: i ∪ Ni ⊂ Ii (E,θ) ⊂ N .
Results in our general theory hold identically both for AOI and POI. The key
observation is that in AOI, if agents form cliques, the shocks of every agent
in the clique are common knowledge across all clique members. Therefore, by
forming a clique with its own type, ni has Vi (d∗i ) expected payoff. Clearly, this
payoff cannot be exceeded in any configuration or any information structure
because bad counterparties always default. In POI, an agent does not need to
know anything more than the shocks of its counterparties. This is so because
interventions make sure, under large shocks, all good agents continue and good
counterparties do not default due to contagion anyways. Under large shocks,
no information is needed by i in POI.
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C Proofs
Section C.1 includes the proofs of the general model presented in Appendix A.
Section C.2 includes the proofs for the simplified model. Naturally, the sim-
plified model’s proofs make use of the results of the general model. Therefore
we start with the proofs of the general model to minimize repetition and save
space. That being said, some results in the simplified model are not direct
corollaries of the results of the general model because specific functional forms
allow us to obtain stronger results in the simplified model.

C.1 General model

Proof of Theorem 1

Step 1. We first establish an upper bound on the expected payoff of agents.
For any network, i’s expected payoff is less than or equal to Vi (di). Because the
distribution of fi (weakly) first-order-stochastically dominates the distribution
of bi due to potential spillovers and Pi(di, fi) is (weakly) decreasing in fi. Also
note that this payoff can be achieved by being at the center of a disjoint star
network with di leaves.

Step 2. Denote dij = |Ni ∩Nj|, ρi = bRi (di)c, and τi = Ti (di). We use this
step in proofs of other results as well, so we make it a lemma.

Lemma 1. If i achieves Vi(di), then for any j ∈ Ni,
min{dij, τi}+ dj − 1− dij ≤ ρj. (5)

Proof. If i achieves Vi(di), then for any j ∈ Ni, in any positive probability
event at which θi = θGi, θj = θGj, and bi = τi, it must be the case that bj ≤ ρj.
Otherwise, in this event, j defaults and so fi ≥ bi + 1. Then i gets less strictly
less payoff than P (di, bi) in this event so V (di) can not be obtained. Therefore,
bi = τi implies bj ≤ ρj.

In particular, consider an event such that min{dij, τi} many agents in |Ni∩Nj|
get bad shocks, τi−min{dij, τi} many agents in Ni\(Nj ∪{j}) get bad shocks,
all agents in Nj\(Ni ∪ {i}) get bad shocks, and all the remaining agents get
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good shocks. Here bi = τi. So we must have bj ≤ ρj. At this event bj is equal
to min{dij, τi}+ dj − 1− dij so (5) must hold.

Step 3. A la Morris (2000): a subset N ′ of agents cohesive if θi′ = θGi′ and
|Ni′∩N ′| ≥ di′−ρi′ for all i′ ∈ N ′. Observe that union of cohesive sets are also
cohesive. The maximally cohesive set of agents continue and the rest default
at the outcome of contagion.

Step 4. If (5) holds for all j ∈ Ni, then i achieves Vi (di).

Note that (5) implies min{dij, b}+dj−1−dij ≤ ρj for all b ≤ τi. Then whenever
bi ≤ τi, for any j ∈ Ni∩NG, the number of good agents in (Ni∩NG)∪{i} is at
least dij+1−min{dij, b} which is larger than dj−ρj. Therefore, (Ni∩NG)∪{i}
is a cohesive set. By Step 3, all agents in it continue. In other words, all good
counterparties of i continue and all bad counterparties of i default, conditional
on bi ≤ τi. Then fi and bi follow the exact same distribution whenever bi ≤ τi.
When bi > τi, i’s payoff is independent of fi regardless. Therefore, i achieves
Vi (di).

Step 5. By Steps 1, 2, and 4, each agent i achieves Vi (di) if and only if
(dij − τj)+ ≥ di − 1− ρi for every {i, j} ∈ E.

Note that Vi(d∗i ) is the globally maximum payoff for agent i by Step 1. To
achieve Vi(d∗i ), each i must have di = d∗i . Then all agents to achieve their
globally maximum payoffs if and only if di = d∗i for all i and (dij − τ ∗j )+ ≥
d∗i − 1− ρ∗i for all {i, j} ∈ E.

Proof of Theorem 2

(Sufficiency) Step 1. First we show that the described networks are GS. Take
two contagion-similar counterparties i and j. They belong to the same clique
so |Ni ∩ Nj| + 1 = d∗i = d∗j . They are contagion-similar so ρ∗i = ρ∗j . Then
(|Ni∩Nj|−ρ∗j)+ = (d∗i −1−ρ∗i )+ ≥ d∗i − 1−ρ∗i . Now take two non-contagious
counterparties i and j. They are non-contagious so ρ∗i ≥ d∗i−1 and ρ∗j ≥ d∗j−1.
Then (|Ni∩Nj|−ρ∗j)+ = 0 ≥ d∗i −1−ρ∗i . Therefore by Theorem 1, the network
is GS.
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(Necessity) Step 2. We use this step in proofs of other results as well, so we
make it a lemma.

Lemma 2. Consider any network and two counterparties i and j. If i has
Vi (di) and j has Vj (dj) payoff, then one of the following must hold:

• i and j are both non-contagious, or
• i and j are both contagious, they have the identical set of counterparties

besides each other (Ni\{j} = Nj\{i}), and they have ρi = ρj.

Proof. Denote dij = |Ni ∩Nj|. By Lemma 1, we have
min {ρi, dij}+ dj − dij − 1 ≤ ρj,

min {ρj, dij}+ di − dij − 1 ≤ ρi.

If one of i and j, say j, is non-contagious, then ρi ≥ di − 1 ≥ dij. Then
min {ρi, dij} = dij. Then the latter inequality becomes dj − 1 ≤ ρj. Thus, j is
also non-contagious.

Now consider the case in which both are contagious. ρj < dj − 1 so the the
former inequality implies min{ρi, dij} < dij. Thus min {ρi, dij} = ρi. Then
the former inequality becomes ρi + dj − dij − 1 ≤ ρj. Symmetrically, we have
ρj + di− dij − 1 ≤ ρi. Adding both up to get di + dj ≤ 2(dij + 1). This implies
that di = dj = dij + 1. In other words Ni\{j} = Nj\{i}. Putting this back
into the inequalities we get ρi ≤ ρj ≤ ρi meaning ρi = ρj.

Step 3. Consider any network and suppose that it is GS. All agents must
have their assortative degrees: di = d∗i . Take two counterparties i and j.
Then by Lemma 2, either both are non-contagious or both are from the same
contagion-class and have the identical set of counterparties. Therefore, by the
connectivity of components, a component can consist of only non-contagious
agents or contagious agents. Those that consist of contagious agents must
consist of agents from the same contagion-similarity class.
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Proof of Theorem 3

This follows the proofs of Theorems 1 and 2. The critical observation is the as-
sortative sorting across agents with respect to risk-type. Agents in the highest
ranked risk-class can achieve their first-best payoff only by forming links with
each other in the way described by the theorem. If they deviate by forming a
link with a lower risk-class their payoff strictly decreases. Deviations among
themselves are can not be profitable by Theorems 1 and 2. Given that agents
in the highest risk class can not be part of a (Pareto) profitable deviation, the
same argument applies to the next highest ranked risk-class for the subnetwork
of agents that are not in the highest ranked risk-class. Induction completes
the proof for sufficiency. For necessity, nι ≥ d∗ι + 1 implies that there are
indeed networks in which agents achieve these payoffs (maximized assortative
values), for example by forming cliques with agents from the similarity class.
Thus, a PSS network must give all agents at least their maximized assortative
values. The same induction argument shows that this is possible only with the
networks described.

Proof of Theorem 4

Step 1. For s ≤ s′ define V ′i (di; s, s′) as

V ′i (di, s, s′) = Eω
[(

(1− s′α (ω)) + s′α (ω)Pbi
[bi > Ri (di)]

)
PDi (di)

+s′α (ω)Pbi
[bi ≤ Ri (di)]Ebi

[PCi (di, bi)| bi ≤ Ri (di)]
]

where bi ∼ B [di, 1− sα (ω)]. By definition V ′i (di, si, si) = Vi (di). V ′ is uni-
formly continuous in s and s′. Also C is finite. Then there exists ε′ such that
for all i, |Vi (d∗i , s, s′)− Vi (d∗i ) | < ε for any s, s′ ∈ Bε′ (si) := (si − ε′, si + ε′).

Step 2. Take a contagion-class. By SLLN, there exists n′ such that if n > n′,
for all s ∈ [s, s], almost surely, there exists at least e+1 agents in the contagion-
class who have risk type in Bε′/2 (s). Since C is finite, the maximum of all
such n′ over all contagion-classes constitute a uniform n′ that works for all
contagion-classes.

Step 3. Define B1 = Bε′ (s− ε′), B2 = Bε′ (s− 2ε′),..., BT = Bε′ (s− Tε′)
where T is such that s − Tε′ < s ≤ s − (T − 1)ε′. We complete the proof by
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an iteration:

In the first step of the iteration, consider all the bins from all contagion-classes
such that the risk-types of agents in these bins are in B1. By Step 2, there is at
least one bin from each contagion-class. By Step 1, they can not improve their
payoff by more than ε. Then these agents will not be part of any deviation.

In the second step, take out all these agents from the first step. Consider all
the remaining bins from all contagion-classes such that the risk-types of agents
in these bins are in B2. Notice that B1 and B2 overlap. This is to deal with
agents whose bin is partly in B1 and partly in B2. Formally, Bt’s have radius
ε′ and so, by Step 2, there is at least one bin from each contagion-class. By
Step 1 and the fact that the agents in the bins that were taken out in the first
iteration do not deviate, agents in the second iteration also do not deviate.

We keep iterating this way. At some iteration (including potentially the first
iteration), if a contagion-class runs of bins, meaning that there are only residual
agents left in the contagion class, remove this contagion class and continue the
iterations. Iteration stops in finite many rounds since n is finite. Denote Nε

the set of agents that have been assigned to bins. By the construction of the
iteration, all agents in Nε are covered by the iteration, and so agents in Nε

do not have deviations among themselves that can improve their by payoff by
more than ε.

Step 4. Finally, note that the number of residual agents is at most |C|e. If n
is large enough |C|e/n < ε, which completes the proof.

Proof of Theorem 5

We first show that by saving NR′\NR,NR′
, the set of continuing agents becomes

NR′ . Conditional on NR′ continuing, an agent i outside NR′ has more than
Ri(di) counterparties outside NR′ . So i defaults. An agent i inside NR,NR′

has
less than Ri(di) counterparties outside NR′ so he continues. Agents in NR,NR′

are saved so they continue.

Step 1. Now we show that this is the optimal policy. Consider the policy
of saving agents in X. Denote Y the set of agents that continue under this
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policy. Notice that Y is the largest set such that Y \X is R-cohesive relative
to Y . Since Y \X is R-cohesive relative to Y , it is also R′-cohesive relative to
Y .

Step 2. Suppose that X is not R′-cohesive relative to Y . Then there is some
i ∈ X such that |Ni\Y | > R′(di). Then |Ni\Y | > R(di). Consider the policy of
saving Y \i. All of Y \i continue. Agents outside Y still default. On the other
hand i defaults because |Ni\Y | > R(di). The change in welfare with respect
to the policy of saving X is 1) −(λi(di)− |Ni\Y |) from the change through i
and 2) −|Ni ∩ Y | through the change in i’s counterparties in Y \i. Note that
|Ni ∩ Y | = di − |Ni\Y |. Then total change is −(λi(di) + di − 2|Ni\Y |) which
is positive because |Ni\Y | > R′(di) ≥ λi(di)+di

2 . This gives a contradiction. So
X must be R′-cohesive relative to Y .

Step 3. Suppose that there is an agent i 6∈ Y such that |Ni\Y | ≤ R′(di).
Since i 6∈ Y , i defaults, meaning |Ni\Y | > R(di). Consider the policy of
saving X ∪ i instead of X. Then all of Y ∪ i continues. Also, j ∈ Ni\Y now
continues if |Nj\Y |− 1 ≤ Rj(di) < |Nj\Y | (i.e. bRj(di)c = |Nj\Y |− 1). Then
R′j(dj) ≥ |Nj\Y |. The continuation j increases welfare by at least (λj(dj) +
dj − 2|Nj\Y |) ≥ 0. As for i, similarly, since |Ni\Y | ≤ R′(di), the continuation
of i increases welfare by at least (λi(di) + di − 2|Ni\Y |) ≥ 0. A contradiction.
So there are no agents i 6∈ Y such that |Ni\Y | ≤ R′(di).

Step 4. By Step 1 and 2, both X and Y \X are R′-cohesive relative to Y .
Then Y is R′-cohesive relative to Y . That is, Y is R′-cohesive. Then, by Step
3, Y is the maximally R′-cohesive set, Y = NR′ . Given that members of NR′
continue, NR,NR′

do not need saving, so X = NR′\NR,NR′
.

C.2 Simplified model

Proof of Proposition 1

A firm with a negative shock θi = θBi < 0 drops its projects even if it receives
transfers. Such firms can not be induced to continuation. Other firms could
be defaulting either because the shock is bad (0 < θi = θBi < ri) or they have
good shocks (ri < θi = θGi) yet they suffer many counterparty failures. It is
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welfare optimal to induce these firms to continuation. Given that firms with
negative shocks are defaulting, an firm with a positive shock can not be induced
to continuation by a transfer less than Q∗i . Giving Q∗i to all firms ensures, in
the best Nash equilibrium, that all firms with positive shocks continue.

Proofs of Propositions 2 and 3

First consider Proposition 2.

(AOI, sufficiency) Corollary of Theorem 2.

(AOI, necessity) Take any network and suppose that it is stable (Pareto Ef-
ficient Strongly Stable). Then it is also strongly stable. If there are no firms
with payoff V (d∗), d∗+ 1 many would deviate to forming a disjoint clique and
get V (d∗). So there is at least one firm with payoff V (d∗), say i. Suppose that
i has at least one counterparty that does not have V (d∗). Let N ′ ⊂ Ni have
payoff V (d∗) and Ni\N ′ 6= ∅ do not. By Lemma 2, all firms in N ′ ∪ i must
have the identical set of counterparties. Thus, members of N ′ ∪ i make up a
clique (not a disjoint clique) and their only other counterparties are Ni\N ′.
But then, members of Ni\N ′ form all their missing links among themselves,
keep their links with N ′∪ i, and cut all their links with firms other than Ni∪ i.
This turns their component into a clique of order d∗+1 and gives them V (d∗),
which is a strict improvement for all of Ni\N ′. Therefore, Ni\N ′ = ∅.

So all counterparties of i have payoff V (d∗). By Lemma 2, all counterparties of
i have the the identical set of counterparties. This means that the component
is a disjoint (d∗ + 1)-clique.

By iterating this argument for the remaining firms, we see that all components
must be disjoint (d∗ + 1)-cliques.

(POI, sufficiency) Corollary of Theorem 2. The only important thing to notice
is that since bad firms are being saved, V (d) = arg maxdw≤e [d− φ/w]+ which
is maximized at e/w instead of d∗.

(POI, necessity) These are all Pareto efficient networks which, along with
sufficiency, completes the for the network part.
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For Proposition 3, the proof is similar to nearly identical. The only difference
is that since, in POI, good firms continue and bad firms default, firms have
degree d∗.

Proof of Proposition 4

Claim 1. In AOI, if a small firm i has Vi (di) payoff, it can not be counterparties
with the large firm.

Proof. Denote the large firm L. Take a small firm i and suppose that it is
counterparties with L and has Vi (di) payoff. By Lemma 1, we have

min{di − φS, diL}+ dL − diL − 1 ≤ dL − φL/wL =⇒

min{di − φS, diL} ≤ diL + 1− φL/wL < diL =⇒

min{di − φS, diL} = di − φS =⇒

di − φS ≤ diL + 1− φL/wL ≤ di − φL/wL =⇒ φL/wL ≤ φS

which is a contradiction.

(AOI, sufficiency) First note that by κS = 1 and eS > φS, small firms want to
have as many links as possible. By Theorem 2, small firms have no profitable
deviations among themselves. By Claim 1, they do not deviate to forming a
link with the large firm either. So the network is SS. As for Pareto efficiency,
by Claim 1, a small firm has strictly less payoff in any other network in which
it has a link with the large firm. Thus the network is Pareto efficient.

(AOI, necessity) By Claim 1, small firms who have links to the large firm do
not achieve V (di) by the lemma above. If there are more than eS of them,
eS + 1 of them they can cut their links to all others, and form a clique of their
own, and achieve V (eS). So the only candidate for SS networks are those in
which the large firm does not have more than eS small counterparties.

Denote SL the counterparties of L in the candidate network E. Given that
the large firm has at most eS counterparties, eS and eS−wL are even integers,
and n ≥ 2(eS + 1), Erdős-Gallai Theorem implies that there exists a network
in which L is counterparties with SL, members of SL have eS − wL small
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counterparties, and all other small firms have eS small counterparties. This
means that if E does not give all small firms exposure eS, it can me Pareto
improved. So the only candidates for PESS networks are the ones described
in the result.

(POI, necessity and sufficiency) Since (1− α)κL < 1, the large firm wants to
have an unbounded number of small counterparties. In POI, this is the unique
Pareto efficient network. By Theorem 1, it is GS, so also SS.

Proof of Proposition 5

Step 1. Since small firms have ex-post payoff function d − f , they do not
transmit contagion. Also, they want to have as much exposure as possible:
eS. Since σαS + σ′α′S > 1 − 1

κL
, the large firm’s expected payoff is strictly

increasing in its degree.

Step 2. Take a small firm i. Denote ωi the event at which the state is high,
the large firm has a good shock, and i has a good shock. Denote ω′i the event
at which the state is low, the large firm has a good shock, and i has a good
shock. Denote dL the degree of the large firm. Denote diL ∈ {0, 1} the number
of large counterparties of i. Denote giL ∈ {0, 1} the number of continuing large
counterparties of i. Then a small firm i’s expected payoff is given by

αLσαS (wLE[giL|ωi] + (ei − diLwL)αS)

+ αLσ
′α′S (wLE[giL|ω′i] + (ei − diLwL)α′S)

+ (1− αL)σα2
S(ei − diLwL)

+ (1− αL)σ′α′2S (ei − diLwL).

L defaults if its threshold is exceeded. Denote
B̃(dL) := B

[
dL − 1, dL − φL/wL

κL
, 1− αS

]
B̃′(dL) := B

[
dL − 1, dL − φL/wL

κL
, 1− α′S

]
If diL = 1, E[giL|ωi] = B̃(dL) and E[giL|ω′i] = B̃′(dL). If diL = 0, E[giL|ωi] =
E[giL|ω′i] = 0. Then, fixing ei, the different in i’s expected payoff between
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being counterparties with the large firm and not is given by
wL

[
αLσαSB̃(dL) + αLσ

′α′SB̃′(dL)− (σα2
S + σ′α′2S )

]
Define

dL := sup
{
d : σαSB̃(d) + σ′α′SB̃′(d) ≥ σα2

S + σ′α′2S
αL

}

Note that B̃(1) = B̃′(1) = 1. Then by αL ≥ σα2
S+σ′α′2S

σαS+σ′α′S
we have dL ≥ 1. Recall

that we are given σαS + σ′α′S > 1 − 1
κL

> α′S. Then αS > 1 − 1
κL

> α′S.
Therefore, limd→∞ B̃(d) = 1 and limd→∞ B̃′(d) = 0. Then, if σαSαL > σα2

S +
σ′α′2S , we have dL =∞. Otherwise, dL is bounded.

(Sufficiency)

Denote S the small firms and SL the counterparties of L.

Step 3. In the candidate network, large firm has d∗L counterparties. Since
small firms do not pose SCR, this is the highest payoff for the large firm
conditional on having d

∗
L or less links. It can not be persuaded into any

deviation in which it ends up having d∗L or less links.

Step 4. Consider i ∈ SL. If it cuts the link with the large firm, it can get at
most Vi(eS), which is less than what it is getting. So it can not be persuaded
into cutting its link with L.

Given that all of SL will maintain their links with L in any profitable deviation,
there is no profitable deviation that reduces i’s SCR. Then the only possible
profitable deviation is with S\SL. But i already has eS − wL many small
counterparties.

Step 5. Given Steps 3 and 4, the only deviation that are potentially profitable
for firms in S\SL, which must include adding a link with L. But since L has
d
∗
L counterparties, small firms get less than Vi(eS) if they form a link with L.

Step 6. Note that this network is also Pareto Efficient by the similar ar-
guments. To maintain L’s payoff, it must keep all links. To maintain SL’s
payoffs, links with L must stay. If S\SL form links with L, this reduces their
own payoff (and SL’s) payoff.

(Necessity)
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Step 7. If L has less than d
∗
L links, a group of small firms in S\SL will

form links with L to strictly improve their own and L’s payoffs. So in any SS
network, L can not have less than d∗L counterparties.

Step 8. If L has more than max{d∗L, eS} ≥ d
∗
L counterparties, then members

of SL get less than V (eS). Then since max{d∗L, eS} ≥ eS, a subset of SL with
eS + 1 many firms deviate to form a disjoint clique and improve their payoff.
So in any SS network, L can not have more than max{d∗L, eS} counterparties.

Step 9. Given that the large firm has at most eS counterparties, eS and
eS − wL are even integers, and n ≥ 2(eS + 1), by Erdős-Gallai Theorem,
Pareto efficiency requires that all small firms have eS exposure.

Proof of Proposition 6

By αL < σα2
S+σ′α′2S
σαS

, dL is bounded and the bound is independent of n. Then
as n grows, in AOI, average welfare is governed by the small firms who do not
have links with the large firm. They are formed into cliques of order eS + 1.
Then in the limit, by SLLN, average welfare is almost surely given by the
random variable

X1 = σ ◦
[Ebh

[(eS + 1− bh)(eS − ηbh)]
eS + 1 θG

]

⊕ σ′ ◦
[Eb [(eS + 1− bh)(eS − ηbh)]

eS + 1 θG


= σ ◦ [αS(1− η(1− αS))︸ ︷︷ ︸

=:M1

eSθS]⊕ σ′ ◦ [α′S(1− η(1− α′S))︸ ︷︷ ︸
=:M ′1

eSθS] =⇒

X1

eSθS
= σ ◦ [M1]⊕ σ′ ◦ [M ′

1]

Note that M1 > M ′
1. In POI, by SLLN, average welfare is almost surely given

by the random variable X2 where
X2

eSθG
= (1− αL)σ ◦

[
αS

(
1− η

(
(1− αS)eS − wL

eS
+ wL
eS

)) ]
⊕ (1− αL)σ′ ◦

[
α′S

(
1− η

(
(1− α′S)eS − wL

eS
+ wL
eS

)) ]
⊕ αLσ ◦

[
αS

(
1− η

(
(1− αS)eS − wL

eS

))
+ (1− η(1− αS)) wL

eS

]
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⊕ αLσ ◦
[
α′S

(
1− η

(
(1− α′S)eS − wL

eS

))
+ (1− η(1− α′S)) wL

eS

]
= (1− αL)σ ◦

[
αS (1− η ((1− αS)))︸ ︷︷ ︸

M1

− ηα2
S

wL
eS︸ ︷︷ ︸

M2

]

⊕ (1− αL)σ′ ◦
[
α′S (1− η ((1− α′S)))︸ ︷︷ ︸

M ′1

− ηα′2S
wL
eS︸ ︷︷ ︸

]
M ′2

⊕ αLσ ◦
[
αS (1− η ((1− αS)))︸ ︷︷ ︸

M1

+
(
1− η(1− αS)2

) wL
eS︸ ︷︷ ︸

]
M3

⊕ αLσ′ ◦
[
α′S (1− η ((1− α′S)))︸ ︷︷ ︸

M ′1

+
(
1− η(1− α′S)2

) wL
eS︸ ︷︷ ︸

]
.

M ′3

Then
V ar

(
X2

eSθS

)
− V ar

(
X1

eSθS

)
= σαL(1− αL)(M2 +M3)2 + σ′αL(1− αL)(M ′

2 +M ′
3)2

+ σσ′ (M1 −M ′
1 + (αS − α′S)η(2αL − αS − α′S))2 − σσ′ (M1 −M ′

1)2

> σαL(1− αL)(M2 +M3)2 + σ′αL(1− αL)(M ′
2 +M ′

3)2

> αL(1− αL) (1− η + 2η(σαS + σ′α′S))2
(
wL
eS

)2
> 0

Proof of Proposition 7

Q.E.D.

Proof of Proposition 8

Denote C,D,G,B the set of continuing, defaulting, good, bad firms, respec-
tively. For any action profile, represented by C and D, welfare is

W =
∑
i

(ei − ηici) θi(1− ai) =
∑
i∈C

eiθi −
∑
i∈C

∑
j∈D

ηiejiθi

Denote an efficient action profile C∗ and D∗. Denote resulting welfare welfare
W ∗.

(Large shocks) Consider θB < −θG. Suppose that C∗ ∩ B 6= ∅. Denote W ′

welfare under the action profile in which C ′ = C∗∩G continues andD′ = D∗∪B
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defaults. Then

W ′ −W ∗

=
∑
i∈C′

(pi + ei)θi −
∑
i∈C′

∑
j∈D′

ηiejiθi −
∑
i∈C∗

(pi + ei)θi +
∑
i∈C∗

∑
j∈D∗

ηiejiθi

= −
∑

i∈C∗∩B
(pi + ei)θi −

∑
i∈C∗∩G

∑
j∈C∗∩B

ηiejiθi +
∑

i∈C∗∩B

∑
j∈D∗

ηiejiθi

= −
∑

i∈C∗∩B
(pi + ei)θBi −

∑
i∈C∗∩G

∑
j∈C∗∩B

ηiejiθGi +
∑

i∈C∗∩B

∑
j∈D∗

ηiejiθBi

= −
∑

i∈C∗∩B
(pi + ei)θBi −

∑
i∈C∗∩B

∑
j∈C∗∩G

ηjeijθGj +
∑

i∈C∗∩B

∑
j∈D∗

ηiejiθBi

=
∑

i∈C∗∩B
θBi

(
− (pi + ei)−

∑
j∈C∗∩G

ηjeij
θGj
θBi

+
∑
j∈D∗

ηieji

)

=
∑

i∈C∗∩B
θBi

(
− pi −

∑
j

eji −
∑

j∈C∗∩G
ηjeij

θGj
θBi

+
∑
j∈D∗

ηieji

)

=
∑

i∈C∗∩B
θBi

(
− pi −

∑
j∈C∗∩B

eji −
∑

j∈C∗∩G

(
eji + ηjeij

θGj
θBi

)
+
∑
j∈D∗

(ηi − 1)eji
)

=
∑

i∈C∗∩B
|θBi|

(
pi +

∑
j∈C∗∩B

eji +
∑

j∈C∗∩G

(
eji − ηjeij

θGj
|θBi|

)
+
∑
j∈D∗

(1− ηi)eji
)

=
∑

i∈C∗∩B
|θBi|

(
pi +

∑
j∈C∗∩B

eji +
∑

j∈C∗∩G

(
eji − ηjeij

θGj
|θBi|

)
+
∑
j∈D∗

(1− ηi)eji
)

which is strictly positive.39 Contradiction. Thus C∗ ⊂ G. Then
W ∗ = θG

∑
i∈C∗

(ei − ηici)

which is strictly increasing in C with respect to set inclusion as long as C∗ ⊂ G.
Thus C∗ = G.

This can be implemented by making good firms that are facing default due
to bad counterparties in the first round of contagion indifferent between de-
faulting and continuing. Contagion stops in the first round and there are no
further transfers needed. Moreover, any transfer less than this can not make
all good firms continue.

39This is strict unless there is only one firm in C∗ ∩ B and it has no counterparties and
its private project has size 0. But we can ignore this case because the minimal transfer
restriction ensures that a singleton is not saved.
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Therefore, bad firms receive no transfer. Good firms who are not pushed to
default in the first round also do not receive any transfers. A good firm that
would default in the first round then receives (piri+eiri+zi)−θGi(pi+ei−ηibi).

(Small shocks) Next consider θB > 0. Then
W ∗ =

∑
i∈C∗

(ei − ηici) θi

is already strictly increasing in C∗ ⊂ N with respect to set inclusion. Then
C∗ = N . The smallest transfer to implement this is to make bad firms in-
different between defaulting or continuing. Since other bad firms will also be
saved, there is no need for to compensate a bad firm for the counterparty
losses. Then each bad firm i receives (piri + eiri + zi)− θBi(pi + ei) to induce
them to continue.
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