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Abstract

While networks offer substantial benefits, they also facilitate the spread of major
public threats such as misinformation in social networks, supply chain disruptions,
cascading failures of interconnected banks, and epidemics. Efforts by authorities to
mitigate contagion can inadvertently diminish agents’ incentives to guard against it.
This effect is amplified by the network itself, which can counteract the intended benefits
of these mitigating measures. Specifically, as more effective tools are deployed to combat
contagion, the interplay between mitigation efforts and endogenous network formation
create a “network hazard,” leading to reduced welfare, increased contagion, and greater
volatility.
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1 Introduction

In recent years, networks have become increasingly significant across various markets, giving
rise to new and complex challenges. The advent of the internet, for example, has greatly
enhanced access to information and facilitated communication. However, it has also exac-
erbated the spread of misinformation, posing a global challenge. Similarly, globalization
has fostered expansive international supply chains and optimized global capital allocation.
Yet, it has also made global production systems more vulnerable to local natural disasters
and geopolitical risks. In modern banking, financial innovations have improved access to
credit and investment opportunities. However, the interbank networks that underpin these
functions, such as complex derivative exposures, have introduced systemic risks. Additionally,
the growth of a global middle class and increasing incomes, along with advancements in
transportation technologies, have boosted mobility and tourism, but have also paved the way
for global pandemics. Overall, while a more interconnected world offers numerous benefits,
it also introduces significant and proportionate drawbacks. The interdependence of agents
within a network creates vulnerabilities that can be transmitted through these connections,
raising concerns about widespread contagion.

The specific structure of networked interactions introduces unique externalities that differ
from those in standard economic models. A bottleneck in a network or the centrality of a
particular agent can disproportionately affect economic outcomes. Therefore, understanding
the relationship between contagious threats and the structure of endogenous networks is
crucial for accurately assessing risks. For example, endogenous superspreader events posed
significant public health threats during the COVID-19 pandemic, while certain public figures
have wielded significant influence over polarized societies, particularly through social media.
Similarly, highly interconnected banks were at the epicenter of the 2008 financial crisis, which
led to unprecedented economic disruption.

Given the complex and widespread effects of contagion, policymakers have employed various
instruments—such as content moderation, subsidies, bailouts, and vaccines—to mitigate
these impacts. However, this approach raises another critical concern: the role of moral
hazard in the endogenous structuring of networks. When agents anticipate the use of such
mitigating instruments, they may alter their network connections in ways that heighten the
risk of contagion.

This paper argues that these instruments can have unintended consequences, potentially
increasing contagion, reducing overall welfare, and heightening volatility due to the endogenous
reactions of network structures. Networks tend to amplify externalities; thus, when individual
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agents’ incentives to protect themselves against contagion are diminished, they are more
likely to assume riskier network positions. This collective behavior can amplify contagion
externalities, outweighing the positive effects of mitigation efforts.

In the proposed model, each agent decides whether to connect to another designated agent.
Exogenous shocks then occur, creating costly externalities that spread through these con-
nections. The total cost for each agent is determined by their Katz-Bonacich centrality.
When agents expect that authorities will reduce the rates governing the spread of contagion
through external interventions, endogenous centrality can increase to a level that negates the
expected welfare benefits of these interventions. The cost of intervention then becomes the
dominant effect on expected welfare. Additionally, agents may substitute the direct contagion
costs from shocks to their connections for the indirect contagion costs from distant shocks
transmitted through their network. This substitution can lead to higher centrality, increased
aggregate exposure to central agents, and greater volatility. For instance, more effective or
widely available vaccines might encourage larger social gatherings, potentially leading to
more significant superspreader events. In the context of bailouts, financial networks may
become more interconnected and concentrated around core banks, which could still default
with a small probability but have a larger impact on peripheral banks.

Only when mitigating instruments are sufficiently effective—such that the endogenous net-
work becomes highly interconnected and less sensitive to further improvements—do these
interventions prove beneficial. This collective form of moral hazard, which reduces welfare or
increases volatility through endogenous network reactions, is termed “network hazard.” This
concept is further explored in stylized models of coordination games, epidemics, and supply
chains, confirming its validity and relevance.

Related literature The importance of central agents and network bottlenecks is under-
scored in the works of Galeotti and Goyal (2010) and Manea (2021). My research contributes
to their by highlighting how centrality and network concentration can be self-reinforcing when
interventions are introduced. Specifically, central agents tend to become even more central in
response to interventions that are initially intended to mitigate the effects of their centrality.

Moral hazard in the context of strategic network formation has also been explored by Erol
(2019) in the domain of financial networks. This study examines core-periphery structures,
threshold contagion, ex-post bailouts, and a limited scope of second-order counterparty
risk. In contrast, this paper investigates more general spillover effects characterized by
Katz-Bonacich centrality, considers various types and timings of interventions, and addresses
higher-order counterparty risks, both upstream and downstream. The broader implications
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are demonstrated through applications in different settings.

Talamàs and Vohra (2020) demonstrate that partially effective vaccines can be detrimental in
endogenous networks, as they lead agents to form more connections. My findings diverge by
showing that agents tend to form more concentrated networks around central agents rather
than increasing the number of links. Additionally, my main analysis extends beyond the
scope of independent cascades of infectious diseases.

Empirical validation of the theory presents significant challenges, given that events like
pandemics, tsunamis, or financial crises are infrequent, and anticipatory interventions are
difficult to observe. However, Celdir and Erol (2023) provide empirical support in the context
of pandemics, demonstrating that during the COVID-19 pandemic, higher vaccination rates
led to increased foot traffic and, consequently, higher infection rates—resulting in more
overall infections and more significant superspreader events as vaccination rates rose. In
the context of financial networks, Anderson, Erol and Ordoñez (2022) show that interbank
deposit networks became more concentrated around regional Federal Reserve Banks following
the establishment of the Federal Reserve System and its discount lending facilities in 1914.

Several related studies examine regulations and interventions in networks without considering
strategic network formation. For instance, Jackson and Pernoud (2019) analyze regulatory
impacts on investment incentives in financial networks, while Dasaratha, Venkatesh and
Vohra (2024), and Bernard, Capponi and Stiglitz (2022) investigate optimal bailout strate-
gies. Galeotti, Golub and Goyal (2020) focus on interventions within fixed networks where
coordination games are played.

Structure of the paper Section 2 presents a simplified baseline model and examines its
equilibria. Section 3 investigates welfare implications and the concept of network hazard. In
Section 4, a more general model is introduced, further illustrating network hazard dynamics.
Section 5 provides standalone applications to coordination games, epidemics, and supply
chains, which validate the main insights with additional institutional details. Finally, Section
6 offers concluding remarks.

2 Baseline

The economy comprises a mass µ of leaf agents, indexed by i ∈ L ⊂ R, and a single root
agent, indexed by i = o. Each leaf i ∈ L decides whether to connect to the root, denoted as
ai = 1, or not to connect, denoted as ai = 0. Connecting provides a benefit υ to the leaf. The
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root cannot refuse any connections. The set N ⊂ L represents the leaves that are connected
to the root, and N is assumed to be measurable.1

After connections are formed, each i experiences a shock ωi, referred to as i’s original potential.
These shocks are positive, uniformly bounded, independent, and have a mean of ω. Potential
spreads throughout the network. Let pi denote the potential of i. For a leaf i ∈ L, the
potential is given by

pi = ωi + δpoai (1)

and for the root o, the potential is

po = ωo + α

ˆ
pjajdj (2)

Here, δ > 0 represents the downstream contagion rate from the root to the leaves, and α > 0

represents the upstream contagion rate from the leaves to the root. The mean of the shocks
ω is called the origination rate. Collectively, these parameters are referred to as contagion
rates.2 The concept of potential is closely related to Katz-Bonacich centrality, a relationship
we explore in greater detail in Section 4. The simple network that emerges in the baseline
case is illustrated in Figure 1.

o

N L\N

δ α

Figure 1: Baseline network

The original potential ωi represents an intrinsic characteristic of agent i, and i is neutral to it.
The excess potential ei = pi − ωi is a costly externality imposed on i. The payoff for agent i
is given by ui = υai − ei.

An equilibrium is defined as a Nash equilibrium that is stable—meaning that no vanishingly
small group of agents can improve their payoffs by deviating jointly. The stability requirement

1An arbitrary strategy profile does not necessarily produce a measurable N . A non-measurable N lacks a
discrete counterpart and abuses the continuum.

2The smallest positive solution to the equations for leaf and root potentials constitutes the network
potentials. This solution can be obtained iteratively: each i starts with an original potential ωi at stage t = 0,
and at each subsequent stage t, the potentials are updated as po,t+1 = ωo+α

´
pj,tajdj and pi,t+1 = ωi+δpo,tai.

The limit of this process, pi = limt→∞ pi,t, yields the final potential.
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serves to exclude knife-edge Nash equilibria, which are artifacts of the continuum and lack a
generic discrete counterpart.3

Interpretation The potential represents an individual’s evolving state concerning a so-
cial or economic issue that poses a costly public threat. This threat propagates through
connections. Examples include cascading defaults in financial networks involving derivative
or debt contracts, disruptions in supply chains, the spread of infectious diseases, or the
dissemination of misinformation in social networks. The potential can be understood as
either the magnitude of a cost or the probability of incurring a fixed cost.

When considering the magnitude of a cost, a payment failure within a financial network can
trigger a series of further failures across a chain of exposures. The extent of these failures
depends on the size of the shortfalls. In supply chains, significant reductions in production
capacity or demand can lead to further disruptions, which are proportional to the extent of
the supply or demand shortages. Conversely, when considering the probability of a given
cost, an agent’s likelihood of contracting an infectious disease during an epidemic increases
the likelihood that their contacts will also contract the disease. Similarly, the probability of
adopting misinformation raises the likelihood that those in contact will also adopt it.

This framework examines the interplay between endogenous centrality and mitigation measures
against contagion. In this context, the “root” represents a central entity. For instance, in
financial networks, the root could be core banks, while the “leaves” are peripheral banks. In
supply chains, the root could be an upstream supplier to downstream producers or consumers.
In epidemics, the root might be an individual in a high-traffic location, such as a cashier in a
grocery store. In social networks, the root could be a specific platform or a popular public
figure on a platform.

Downstream and upstream contagions often exhibit structural differences. To account for this,
we consider two separate rates, α and δ. In social networks, interactions between celebrities
and fans are typically asymmetric. In supply chains, suppliers face disruptions from demand
changes by their buyers, while buyers are vulnerable to production disruptions from their
suppliers. In core-periphery financial networks, the nature of exposures between the core and
the periphery is often asymmetric.

3The vanishingly small group is also assumed to be measurable. Therefore, when N is measurable, payoffs
corresponding to the strategy profile and after feasible deviations are well-defined. However, payoffs are not
well-defined for arbitrary strategy profiles. Thus, the environment formally constitutes a pseudo-game.
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2.1 Baseline equilibrium and welfare

Equilibrium A connected leaf is subject to externalities from the root, while the root
is exposed to externalities from all connected leaves. Consequently, each connected leaf is
indirectly exposed to every other connected leaf. Specifically, the potential po of the root o
incorporates its own original potential ωo as well as the upstream contagion from the leaves,
given by α

´
N
pjdj. The aggregate potential of the connected leaves includes their individual

shocks,
´
N
ωjdj, as well as the downstream contagion from the root, δ

´
N
podj. Ultimately,

the potential of any agent is a linear combination of shocks. The exposure of an agent to
the shocks of agents at distance k is referred to as k-th order contagion. The measure of the
connected leaves, n ≡ |N |, is called the connection rate. For each connected leaf i, we have

pi = ωi + δpo = ωi + δωo + δα

ˆ
N

pjdj = ωi + δωo + δα

ˆ
N

ωjdj + δ2α

ˆ
N

podj = ...

= ωi +
δ

1− αδn
ωo︸ ︷︷ ︸

first-order contagion

+
δα

1− αδn

ˆ
N

ωjdj︸ ︷︷ ︸
second-order contagion

(3)

As more leaves connect, the magnitude of the second-order contagion increases. In other
words, the net benefit of a connection is influenced by a congestion effect due to second-order
contagion. This effect uniquely determines the mass of connected leaves in equilibrium. We
denote this mass by

n ≡ 1

α (ω + υ)

(υ
δ
− ω

)
Proposition 1. The equilibrium connection rate is n∗ = max {0,min {µ, n}}.

Increasing the connection rate n raises the expected potential of the root, E[po]. Consequently,
the net expected benefit of connecting, υ − δE[po], decreases until it reaches the indifference
condition, υ = δE[po]. By taking the expectation of the externalities described in Equations
(1) and (2), we find:

E[po] = ω + αnE[pi] = ω + αn (ω + δE[po])

Combining this with the indifference condition, we derive υ = δ (ω + αn (ω + υ)), which
determines the equilibrium connection rate n∗.

It is intuitive that the connection rate increases as the contagion rates are reduced. Notably,
the product αn∗ is independent of α. This implies that decreasing α does not alter the
first-order contagion effect for a connected leaf. However, it does affect the root’s first-order
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contagion and the leaves’ second-order contagion. Therefore, α influences the incentives
of the leaves, and thus the connection rate, primarily through its impact on second-order
contagion. We further explore contagion effects beyond the second-order in a more detailed
framework in Section 4.

Welfare For the remainder of the baseline analysis, assume υ > ωδ and µ = ∞ to avoid
corner cases of the connection rate, n∗ = 0 and n∗ = µ. The incentives in these corner cases
are uninteresting.

Welfare W is defined by the payoffs of the leaves since the root is only a single agent. Thus,
welfare has two components: the aggregate connection benefits and the aggregate contagion
costs K. The expression for welfare is given by

W ≡
ˆ
L

uidi︸ ︷︷ ︸
welfare

=

ˆ
L

υaidi︸ ︷︷ ︸
connection benefits

−
ˆ
L

(pi − ωi) di︸ ︷︷ ︸
contagion costs K

= nυ − nδpo (4)

Proposition 2. Equilibrium welfare is

W ∗ =
(υ − δω)

αω (1 + δ)
(ω − ωo)

The variance of the shocks to the leaves averages out in the aggregate. However, a shock to
the root has significant aggregate effects on welfare. The deviation of the root’s shock from
its mean, |ω − ωo|, spills over to the leaves.

3 Network hazard

In many cases, a principal—such as a specific government body or a platform’s manage-
ment—has tools to mitigate contagion externalities. Examples of such tools include capital
requirements or public liquidity provision in the context of financial contagion, subsidies
in supply chains, vaccines or masks in epidemics, and content moderation or search engine
algorithms in social networks. Each of these instruments can mitigate contagion within its
respective context.

Consider a principal with access to instruments that can reduce the contagion rates α, δ, ω.
A mitigation effort that reduces upstream contagion by α − α̂ lowers α to α̂. Similarly,
a mitigation of downstream contagion by δ − δ̂ reduces δ to δ̂. Mitigation of contagion
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origination by ω − ω̂ scales each ωi to ω̂i = ωi
ω̂
ω

ensuring that post-mitigation shocks remain
positive. We analyze the mitigation of each contagion rate independently.

For a given contagion rate θ ∈ {α, δ, ω}, mitigation of size θ − θ̂ incurs a cost of 1
η
c(θ̂; θ),

where η > 0 is a constant, and c is a decreasing and convex function of θ̂ ∈ [θ, θ] with
c(θ; θ) = 0 and θ > 0. We refer to η the efficacy of the mitigation instrument. Welfare is
given by W̃ (θ̂;n) = W (θ̂;n)− 1

η
c(θ̂; θ) where W (θ̂;n) is the baseline welfare W (as defined

in expression (4)) evaluated under θ̂ instead of θ, keeping all else fixed.

We consider two timing scenarios. The first is the case of commitment, where the mitigation
policy is chosen and implemented before any connections are made; this type of mitigation is
termed prevention. The second scenario involves a lack of commitment, where the mitigation
policy is selected and implemented after connections have been established but before the
shocks occur; this type of mitigation is referred to as intervention. In both cases, the principal
aims to maximize the expected welfare E[W̃ ].

3.1 Prevention

Consider a principal who can prevent contagion by reducing the contagion rate θ to θ̂ before
any connections are established.

Theorem 1. (Prevention and network hazard) The expected welfare decreases, the
expected cost of contagion increases, and the variance of welfare increases as the size of the
prevention effort increases. Specifically E[W̃ ∗] decreases while E[K∗] and V[W̃ ∗] increase with
θ − θ̂. Consequently, the optimal policy for the principal is to avoid preventing contagion,
implying θ̂∗ = θ.

Proposition 2 demonstrates that reducing a contagion rate θ increases the connection rate n∗

to a degree that offsets the direct welfare gains from reducing θ. Regardless of the extent of
prevention, leaves are indifferent between connecting and not connecting. Both connected
and unconnected leaves have an expected payoff of 0. Consequently, the expected welfare net
of prevention cost is E[W ] = 0 in equilibrium. Therefore, expected welfare E[W̃ ] decreases
with the size of the prevention effort, indicating that costly prevention is suboptimal.

Volatility is economically significant, and enhancing stability can provide contextual benefits.
For example, in the context of epidemics, sharp increases in infection rates can lead to
hospitalizations exceeding capacity, which strains the healthcare system. This strain can
adversely affect the treatment of other conditions and result in excess deaths. In financial
contagion, tail risks can trigger financial crises that may spill over into the real economy. Even
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if tail events with low probability do not heavily influence the welfare-maximizing optimal
policy, crises of significant magnitude can cause unforeseen disruptions in related areas.

A stronger preventive measure tends to induce more volatility without enhancing welfare.
This occurs because the first-order contagion cost is more sensitive to changes in contagion
rates than the second-order contagion cost, while the incentives of the leaves create a trade-off
between these two costs. Reducing contagion rates diminishes the impact of second-order
contagion but amplifies the impact of first-order contagion on individual leaves. Additionally,
lower contagion rates lead to higher connection rates, meaning that more leaves are affected
by the root’s shock at a higher rate, thereby increasing aggregate volatility.

To elaborate further, recall expression (4) that breaks down the cost of excess potential
into first-order and second-order contagion effects. Let the multiplier of ωo be FC (First-
order Contagion), and the multiplier of the average shock to the leaves be SC (Second-order
Contagion).

In equilibrium, leaves connect up to the point where they are indifferent between connecting
and not connecting, thereby eroding expected connection benefits to this point of indifference.
This condition can be expressed as υ = (FC+ SC)ω. Due to the recursive nature of contagion
and potential, FC · ω represents the root’s (expected) potential transmitted to a leaf at rate
δ. Thus, we have FC = δ(1 + SC). Substituting this relationship into the equation gives
SC(1 + δ)ω + δω = υ. Therefore, SC is weakly increasing, and FC is weakly decreasing with
respect to the contagion rates α, δ, and ω.

There is n∗ measure of connected leaves in equilibrium. Hence, the aggregate effect of the
root’s shock on the network isn∗FCωo. Since FC is decreasing with respect to the contagion
rates, the aggregate effect n∗FC also decreases as the contagion rates decrease.

3.2 Intervention

Consider a principal who can intervene to reduce the contagion rate θ to θ̂ after connections
have been made but before shocks have materialized. We first establish a general result
regarding the two extremes of the intervention policy, where θ̂ ∈ {θ, θ}.

Proposition 3. There exists η > 0 and n such that for all η ̸= η, connection rate n∗
η = n and

maximal intervention θ̂∗η = θ is an equilibrium outcome if and only if η > η. For η > η, there
is no network hazard: E[W̃ ∗] is increasing, whereas E[K∗] and V[W̃ ∗] are decreasing in η.

There exists η ≥ 0 such that for all η ̸= η, the baseline connection rate n∗
η = n and no-

intervention θ̂∗η = θ is an equilibrium outcome if and only if η < η. Also, η = 0 if and only if
c1 (θ, θ) = 0. For η < η, efficacy η does not affect welfare.
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The contagion rate of interest cannot be reduced below the feasibility threshold θ. This
constraint causes the mass of connections to be bounded as η varies, with the upper bound
being n. When the efficacy is high enough to achieve maximum connection rate n in
equilibrium, further increases in efficacy are beneficial. This outcome is intuitive: if the
network is inelastic to contagion rates, then reducing these rates decreases the cost of contagion
and enhances welfare.

However, when efficacy is below the corresponding cutoff, there is potential for negative
consequences due to an elastic connection rate n∗

η. Additionally, there are cases where the
cost function does not yield an "interior" equilibrium connection rate. For example, when
the cost function is given by c(θ̂; θ) = 1

1−γ
(θ1−γ − θ̂1−γ) with γ ∈ (0, 2), all equilibria for any

η result in either n∗
η = n or n∗

η = n. In this example, although there is an interior solution
to the leaves’ indifference condition between connecting or not, this solution is not stable
against deviations by small groups.

We use a commonly applied functional form to explore interior equilibria.

Theorem 2. (Intervention and Network Hazard) Let c(θ̂; θ) = 1
1+γ

(θ − θ̂)1+γ.

Increasing the efficacy of the policy instrument reduces welfare, increases contagion, and
increases volatility unless the efficacy is sufficiently high.

There exists a threshold η̃ > 0 such that for all η < η̃, there is network hazard in equilibrium:
E[W̃ ] is decreasing, while and V[W̃ ∗] are increasing with respect to η.

Notice that c1 (θ, θ) = 0 in Theorem 2. Therefore, by Proposition 3, the baseline outcome
(n, θ) does not emerge as an equilibrium outcome. It is optimal to intervene, meaning θ̂ < θ.
A higher η, indicating a more effective intervention tool, reduces θ̂∗η. However, the connection
rate n∗

η adjusts and cancels out the expected welfare gains from interventions. The effect of
efficacy on welfare and volatility is depicted in Figure ???

Consequently, the cost of intervention becomes the primary factor in expected welfare. The
cost of intervention is reduced by higher efficacy η but increased by the larger intervention
size θ − θ̂∗η. The net effect is an increase in the cost of intervention because the marginal
aggregate contagion cost is strictly positive. Thus, higher efficacy reduces expected welfare.
Additionally, volatility increases as the rising connection rate nη∗ heightens exposure to the
root’s shock.

Remark The unintended negative consequences of deploying mitigating measures are
referred to as network hazard. This effect, however, has its limits. When µ = ∞, the
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Figure 2: Impact of interventions as efficacy η grows (Values: α = δ = ω = γ = 1, υ = 2)

connection rate increases without bound, always counteracting the direct positive impact
of the mitigation measures. However, if µ < ∞, and the mitigation tool is sufficiently
effective, the connection rate stabilizes at full connectivity, n∗ = µ. Beyond this point, further
enhancements in the effectiveness of the mitigation tool actually increase welfare and decrease
volatility. The key insight is that mitigation tools are only beneficial when their effectiveness
is high enough that the network becomes inelastic to their impact. Only then does it make
sense to deploy these tools and improve their efficacy further.

3.3 Interference

Interference with contagion rates after shocks have materialized yields no qualitative difference
from intervention. However, there is a difference when considering another relevant policy tool.
In the context of epidemics, quarantines and stay-at-home orders restrict regular or habitual
social events, effectively severing connections. In social media, suspending or censoring a
public figure cuts off their existing communication channels with followers. In financial
networks, broad-based interventions like the Troubled Asset Relief Program eliminate certain
exposures from the financial system.

Now, consider a principal who can mitigate contagion by severing connections. Mitigation by
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removing connections is redundant or ineffective if implemented before shocks occur. For a
policy f , removing f(n) connections out of n is anticipated by the agents, who would then
establish n′ connections such that n = n′ − f(n′). Therefore, we focus on interference with
connections after shocks have been realized.

Extend the baseline scenario to allow the principal to cut each connection at a cost κ after
the realization of shocks. For simplicity, assume the principal can either cut all n connections
or none at all, which aligns with practical applications. The principal’s objective is to
maximize welfare W̃ , defined as the baseline welfare W from expression (4) minus the cost of
interference, 0 or κn. The policy is chosen and implemented after shocks have materialized.
Shocks are assumed to be i.i.d. and uniformly distributed, with ωi ∼ U [0, 2ω]. We also
require that the equilibrium be robust against a vanishingly small probability of interference
failure to rule out some unintuitive cases.4

Theorem 3. (Interference and network hazard) Welfare increases as the principal’s
cost of interference rises in a middle range.

There exist thresholds κ and κ such that, in a robust equilibrium, expected welfare increases
with κ for κ ∈ (κ, κ). For κ ≥ κ, the equilibrium outcome corresponds to the baseline outcome.

Interference is conditional on the realization of the root’s shock, ωo. If ωo exceeds a certain
threshold such that the cost of contagion is greater than the cost of interference, the contagion
cost is replaced by the public cost of interference. This imposes an upper bound on the
cost of contagion. Leaves connect up to the point of their indifference condition without
internalizing the cost of interference.

4 Higher orders of contagion and network hazard

Second-order contagion regulates and determines the connection rate in the baseline scenario.
In more complex network structures, shocks can propagate along longer paths, leading to
higher orders of contagion. Agents consider these higher orders of contagion when deciding
to form connections. Analyzing these incentives becomes more complex in the presence of
cycles. With cycles, two agents can have multiple paths of different lengths between them,
imposing different orders of contagion on each other. An acyclic network structure avoids this
complexity and provides a tidy framework for exploring higher-order contagion. To achieve
this, we adopt a recursive and acyclic structure inspired by Elliott, Golub and Leduc (2022).

4If 1− αδn is close to 0, there is interference irrespective of ωo. All connections are always severed by the
principal and all leaves have 0 payoff. This is an equilibrium, but it does not survive a small probability of
interference failing.
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Model For a fixed T ≥ 1, let L = [0, µ)T ⊂ RT be the set of leaf agents, and let
B = ∪T−1

t=0 [0, µ)
t be the set of bud agents. We use the convention that R0 is singleton

consisting of the empty vector o = (). The case T = 1 represents the baseline scenario.

For each i ∈ Rt with t ≥ 1, denote i∗ ∈ Rt−1 the first t − 1 coordinates of i. This means
i = (i∗, y) for some y ∈ R. Each i ̸= o can choose to connect to i∗, denoted by ai = 1, or not
to connect, denoted by ai = 0. Bud i ∈ B is called a branch if it chooses ai = 1; otherwise, i
is called a root.

Let Ni be the set of agents that connect to i, and ni be the measure of Ni. The potential of i
follows a generalization of the process in the baseline case:5

pi = ωi +

(
δpi∗ai + α

ˆ
Ni

pjdj

)
(5)

The shocks and payoffs are identical to their baseline.

The network that emerges from any strategy profile is a forest of rooted directed trees. Agents
can choose to become roots if they find the cost of downstream contagion from their potential
upstream connection to be too high. The decision of agent i to connect to i∗ depends on i∗’s
decision to connect to (i∗)∗, and so on. Iteratively, up to 2T ’th order contagion is present in
the economy.6

Discrete analogue In a discrete counterpart of the model, the µ measure of candidate
downstream connections for each bud i represents a discrete m = ⌊µ/ϵ⌋ number of agents,
for some small ϵ. In this setup, there are 1 + m + ... + mT−1 buds and mT leaves in the
economy. The discrete counterpart of the contagion mechanics described in Equation (5)
is given by pi = ωi +

(
δpi∗ai + αϵ

∑
Ni

pj
)
. The continuum model can be seen as the limit

of the discrete model as ϵ → 0. This continuum formulation resolves integer problems and
provides tractability in the determination of equilibrium potentials and connection rates.
After establishing this mapping to the discrete model, we assume µ = ∞ to avoid corner
cases of connection rates.

Katz-Bonacich centrality and network games The concept of potential is analogous
to Katz-Bonacich centrality. We extend Katz-Bonacich centrality to include a discrete

5Similar to the baseline, we pick the smallest positive solution which can be found by the limit of an
iterative process.

6T ’th-order upstream from leaves to o followed by T ’th-order downstream from o back to leaves makes up
2T ’th-order contagion.
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downstream damping factor δ and a continuous upstream damping factor α. The network
induces a linear operator that maps the (random) baseline centrality ωi to the (random)
Katz-Bonacich centrality pi. Due to linearity and risk-neutrality, the expected baseline
centrality ω guides network formation. The continuum population and hierarchical structure
allow us to determine the endogenous network and derive the centrality of each agent in a
tractable closed form.

It is well known that Katz-Bonacich centrality is related to network games with complemen-
tarities. For instance, suppose that after the network is formed, agents play a network game
where each agent i chooses an action qi ∈ R. The payoff for agent i in the network game is

vi = −

√
(qi − ωi)

(
2 (qi − ωi)−

(
δqi∗ai + α

ˆ
Ni

qjdj

))
This is, i prefers to take an action qi close to its original shock ωi, but also prefers to take a
higher action qi if its connections take higher actions qi∗ and (qj)j∈Ni

. In the nash equilibrium
of this game, each i plays qi = pi, and gets payoff vi = − (pi − ωi) = ei. Adding υai connection
benefit, the payoff of i is υai + vi = υai − ei.

This means that agent i prefers to choose an action qi close to its original shock ωi, but
also prefers to take a higher action if its connections take higher actions qi∗ and (qj)j∈Ni.
In the Nash equilibrium of this game, each agent i chooses qi = pi and receives a payoff of
vi = − (pi − ωi) = ei. Including the connection benefit υai, the total payoff for agent i is
υai + vi = υai − ei.

4.1 Equilibrium network

An instrumental quantity in the describing the equilibrium is the benefit of a connection
relative to the downstream transmission rate:

ρ ≡ υ

δ

The unique equilibrium network is determined by the following quantities:

R = max (0, ρ− ω) , B = max (0, ρ− ω − υ)

r =
R

α (B + ω + υ)
, b =

B

α (B + ω + υ)

r′ =
R

α (ω + υ)
, b′ =

B

α (ω + υ)
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Theorem 4. The equilibrium network is unique (up to measure preserving transformations).
In this equilibrium, each i ∈ B\RT−1 has r connections if i is a root and b connections if i is
a branch. For i ∈ RT−1, the values are r′ and b′. Specifically:

• If υ
ω
> δ

1−δ
, then r, b, r′, b′ > 0. There is a single rooted tree of depth T , starting with

o ∈ R0. All roots in Rt are roots of trees of depth T − t. Each bud has an expected
potential of ρ.

• If δ
1−δ

≥ υ
ω
> δ, then r, r′ > 0 = b = b′. The network consists of rooted trees of depth

1 (as in the baseline). Roots have an expected potential of ρ, and branches have an
expected potential of ω + υ.

• If δ ≥ υ
ω
, then r = r′ = b = b′ = 0. The network is empty, and each bud has an expected

potential of ω.

The connection rates b, b′, r, r′ decrease with increasing contagion rates α, δ, and ω.

Whether ρ exceeds the minimum expected potential ω of a connection (i.e., υ
ω
≥ δ) determines

whether connecting to an otherwise isolated upstream branch is beneficial. Whether ρ exceeds
ω + υ (i.e., υ

ω
> δ

1−δ
) determines, in equilibrium, whether connecting to a branch with an

upstream connection but no downstream connections is beneficial. When ρ is larger than
ω + υ, a complex network with long contagion paths emerges. Agents are willing to connect
to upstream branches who are themselves connected to their upstream branches and so
on, leading to trees of various depths in equilibrium. The unique equilibrium network that
emerges in this case is depicted in Figure 3.

In the baseline case, second-order contagion determines the connection rates. In general,
connection rates are influenced by all orders of contagion. Regardless of the components
contributing to the potential of a bud, downstream agents connect up to their point of
indifference. The network configuration adjusts to ensure that potentials are equal to ρ.
According to equation (5), connection rates r and b are determined by:

ρ = ω + αρr

ρ = ω + (δρ+ αρb)

Leaves cannot be connected to, so their potentials do not equilibrate to ρ. Instead, connected
leaves have a potential of ω + δρ, as in the baseline case. This relationship determines r′ and
b′.
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Figure 3: Unique equilibrium network

Theorem 4 shows that the incentives shaping connections have separable effects. First-order
downstream contagion reduces connection rates by a connection multiplier of R

B
, and second-

order upstream contagion reduces connection rates by a connection multiplier of B+ω+υ
ω+υ

.
Roots do not face downstream contagion, so they have r

b
= r′

b′
= R

B
times more downstream

connections than non-roots. Final branches (i.e., RT−1) do not experience second-order
upstream contagion. Therefore, final branches have r′

r
= b′

b
= B+ω+υ

ω+υ
times more downstream

connections than non-final branches. These separable effects also allow for a comparison with
the baseline case, as roots in RT−1 are similar to the root in the baseline. This similarity is
reflected in the fact that r′ = n.

Other network topologies The framework restricts connection decisions to a hierarchical
structure, resulting in a unique equilibrium network. It is important to note that even if
agents are allowed to connect to any bud, not just their designated predecessor (i.e., i∗ for
i), the strategy profile described in Theorem 4 is still an equilibrium. This is because all
buds and downstream connections of each root are indifferent between connecting and not
connecting, making them also indifferent to changing their upstream connection to another
bud. In this broader setup, there are other equilibrium networks, including cyclic networks.

17



4.2 Higher orders of contagion and centrality

For the remainder of this section, assume υ
ω
> δ

1−δ
. Under this condition, the equilibrium

network described in Theorem 4 consists of deep trees, and higher order of contagion is
present. All branches have a potential of ρ, and the connection rate is given by

b =
1

α

(
1− δ

(
1 +

ω

υ

))
In an equilibrium tree, each branch has a measure of b connections (except for the root,
leaves, and branches that are directly before the leaves). This creates a recursive structure as
an equilibrium outcome, allowing us to quantify the effects of shocks based on the distance
between the origin of the shock and the affected agent.

Proposition 4. In equilibrium, for any t, t′ such that t < t′ < T , and for any i ∈ Rt and
any j ∈ Rt′ with a path to i, the effect of i’s original potential ωi on j’s potential pj is

dpj
dωi

=
et

′−t

1− αeni

+O(eT )

where

e ≡ 1−
√
1− 4δαb

2αb

Let ∂k denote the magnitude of the effect of a shock on leaves at distance k downstream from
the origin of the shock. The contagion mechanism in equation (5) gives

∂k = (δ∂k−1 + αb∂k+1)

This difference equation represents how the endogenous network amplifies shocks. The
solution to any such difference equation is exponential in nature. In particular, ∂k is O(ek)

where e solves the quadratic equation

e = δ + αbe2

The magnitude e represents the effect of shock ωi on the potential of downstream branches
Ni relative to the effect of ωi on i itself. The first component of e is the direct relative
downstream effect from i, which is δ. Given that e relatively amplifies ωi one step downstream,
e2 represents the relative amplification of ωi two steps downstream. For a given j ∈ Ni, a
measure b of agents in Nj, who are subject to the e2 amplification from i, feedback one step
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upstream at rate α on j. This introduces the second component of e, which is the two steps
downstream and one step upstream effect, αbe2.

In the baseline case, there is no αbe2 term because there are no branches. In the baseline
scenario, the relative effect of root o’s shock on the leaves is only the direct relative effect
δ. This is evident when considering that for i ∈ N , the baseline yields dpi

dωo
= δ

1−αδn
and

dpo
dωo

= 1
1−αδn

.

4.3 Welfare and network hazard

The set of leaves is infinitely larger than the set of branches, so the payoffs of leaves drive
the welfare analysis. The set L is endowed with the Lebesgue measure λT in RT .7 Welfare is
defined as

W ≡
ˆ
L

uidλT (i)

The only shock that can potentially create aggregate volatility is ωo. In equilibrium, shocks to
other agents reach at most a uniformly bounded λT−1-measure of leaves, which is negligible
in λT . Therefore, welfare volatility is driven by an amplifier of

ET ≡ dW

dωo

The magnitude of amplification is determined by the network structure and does not depend
on the ex-post realization of shocks, as potentials are affine functions of individual shocks.

Proposition 5. In equilibrium, ex-post welfare is given by

W ∗ = E∗
T (ω − ωo)

where the amplifier E∗
T is determined by

lnE∗
T = T ln (eb) +O(1)

and

eb =
1

2α

(
1−

√
(1− 2δ)2 + (2δ)2

ω

υ

)
7In the discrete counterpart of the model, provided that the ‘size’ of each agent ϵ is sufficiently small,

the welfare of the leaf agents constitutes an arbitrarily large fraction of the total welfare of all agents.
Consequently, the optimal policies discussed here are approximately optimal in the discrete model with
arbitrarily high precision for sufficiently large populations.
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The exact closed-form formula for E∗
T can be found in the proof of the result. Proposition 4

demonstrates that a shock is multiplied by a factor of e when transmitted to a connection
one step downstream. Branches on the tree rooted at o have a measure b of downstream
connections. Therefore, an amplifying factor eb governs the comparative statics of welfare for
large T .

Theorem 5. (Foundations of network hazard) In equilibrium, the expected welfare
is zero. Reducing contagion rates increases welfare volatility, except for the downstream
contagion rate when it is already sufficiently low.

Formally, E[W ∗] = 0 and V (W ∗)1/T = eb−O(1/T ). The amplifying factor eb is decreasing
in α and ω, and it is decreasing in δ if and only if 2δ

(
1 + ω

υ

)
> 1.

This establishes the foundation for network hazard in the general model. Recall that the
earlier results in Section 3 relied on two key forces: (i) agents connect up to the point where
expected contagion costs exhaust the net benefits of connections, and (ii) first-order contagion
is “steeper” than second-order contagion.

The first principle (i) holds in general, as shown by E[W ∗] = 0 in Theorem 5. As a result,
both prevention and intervention are ineffective. A larger-scale prevention effort would
only increase the cost of mitigation without enhancing expected welfare net of prevention
costs. When the principal lacks commitment, an increase in the efficacy of the intervention
instrument leads to a larger intervention size, which raises the cost and reduces welfare.

Volatility decreases with contagion rates, similar to the baseline, except for small values of δ.
To understand the reason for the non-monotonicity in δ, first recall that in the baseline, the
connection rate is given by n∗ = 1

α(ω+υ)

(
υ
δ
− ω

)
. Thus n∗α and n∗δ are weakly decreasing in

α and δ. In the extended model, the connection rate is b = 1
α

(
1− δ

(
1 + ω

υ

))
. The factor bα

is weakly decreasing in α but bδ is non-monotonic. To see why, recall the discussion following
Theorem 4, which dissects connection incentives and their consequences on connection rates.
The separable effects of upstream and downstream contagion on the incentives are captured
by b = r′ × B

R
× ω+υ

B+ω+υ
, and r′ = n∗. Thus,

b = n∗ × ρ− ω − υ

ρ− ω︸ ︷︷ ︸
1 step downst.

× ω + υ

ρ︸ ︷︷ ︸
2 step down and 1 step up

The third-order (two steps down and one step up) connection multiplier ω+υ
ρ

reflects changes
in the mass of connections by accounting for the impact of downstream connections on
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downstream connections. This third-order multiplier is increasing in δ, unlike the first-order
downstream connection multiplier ρ−ω−υ

ρ−ω
and the baseline connection rate r′ = n∗.

This is intuitive: the direct positive effect of reducing the downstream contagion rate δ on
first-order contagion is offset by connection incentives. Then, the effect on second-order
downstream contagion, which is reflected back via upstream contagion, becomes positive.
If δ is already low, n∗ is relatively inelastic, so the positive marginal effect of reducing δ

through third-order contagion outweighs the negative marginal effect caused by the increased
connection rate n∗. Notably, this holds for any arbitrarily large T . The tradeoffs between
marginal effects on higher orders parallel those on lower orders due to the recursive structure.

These results confirm the intuition from the baseline model. Unless protective measures are
highly effective, they tend to reduce welfare and increase volatility.

5 Network hazard in applications

This section introduces several standalone models from different applications, incorporating
additional institutional details to enhance robustness.

5.1 Coordination games and monetary transfers

This section examines monetary incentives in coordination games. For example, advertisers
might pay influencers to leverage peer effects, or a manager might design bonuses to enhance
group performance.

Consider a setting with two followers f1, f2, and one leader l. In the first stage, links are
formed, denoted by eij = eji ∈ {0, 1}. Forming a link costs c > 0 for followers and 0 for the
leader, denoted ci ∈ {0, c} for agent i. Followers are not allowed to link to each other. In the
second stage, independent shocks θi ∈ {g, b} are realized. The good shock g > 0 occurs with
probability α > 1/2, while the (sufficiently) large bad shock b > g occurs with probability
1− α.

After the shocks are realized, each agent i simultaneously chooses an effort level ai ∈ {0, 1}
with complete information. The shocks represent the cost of effort. Effort ai applies to all of
i’s links and costs θi per link. If both i and j exert effort and eij = 1, the link generates a
benefit yields β > g to agent i. Thus, the payoff of agent i in the coordination game (in the
second stage, net of cost of links) is ai

∑
j (βaj − θi) eij.

21



Agents play the best8 Nash equilibrium in the second stage. The ex-post payoff of i is

ui =
∑
j

(ai (βaj − θi)− ci) eij

In the first stage, agents form (pairwise) stable9 networks given the expected continuation
payoffs.

Welfare and transfers There is a principal who observes the network and the shocks
and then commits to making transfers to each agent based on their effort. Given a transfer
scheme ti(ai|e,θ), the payoff of agent i in the coordination game is ui + ti.10 The welfare
cost of a unit transfer is 1 + z, where z represents a transaction cost. Welfare is given by

w =
∑
i

(ui + ti)− (1 + k)
∑
i

ti =
∑
i

(ui − zti)

We consider the limit as z ↓ 0. This is equivalent to setting z = 0 and choosing the minimal
transfer scheme among the optimal transfer schemes under z = 0.

Equilibrium If both followers link to the leader, they become indirectly exposed to each
other’s actions through the leader, making shirking contagious.

Proposition 6. Assume 4g > 2β > 3g and α2 > c
β−g

> α3. (Other cases are solved in the
appendix.)

In the absence of transfers, the leader has one follower.

In the presence of transfers, the leader has two followers.

Variance of welfare is larger in the presence of transfers than in the absence of transfers.

The stable network is illustrated in Figure 4. When β < 2g, the benefit from a single link is
insufficient to incentivize the leader with two linked followers to exert effort. Therefore, if
the leader has two followers and one follower experiences a bad shock, the leader will shirk.
This, in turn, causes the other follower to shirk as well. As a result, followers are exposed to
second-order contagion. This scenario is sufficiently likely when α3 < c

β−g
, which prevents

the leader from having two linked followers in equilibrium in the absence of transfers.
8Top element of the lattice of Nash equilibria.
9Pairwise stability requires that no pair of agents has a joint incentive to either cut or add a link, and no

single agent has an incentive to cut an existing link.
10Given that transfers are conditional individual actions, the best Nash equilibrium is still well-defined.

22



l

f1 f2

Absence of transfers

l

f1 f2

Presence of transfers

Figure 4: Stable network. Contagion that originates at f1 can spread to l. This risk prevents
f2 from linking to l. Transfer to l mitigates contagion that originates at f1. Then f2 also
links with l. But then the effect of contagion that originates at l is exacerbated.

When 2β > 3g and α2 > c
β−g

, the precise role of optimal transfers is to mitigate second-order
contagion. Provided that the leader has two linked followers, a transfer occurs if and only if
one follower, fi, receives a bad shock while the the other follower, fj, and the leader have
good shocks. The transfer persuades the leader to exert effort to prevent contagion, thereby
protecting the other follower fj. However, the leader can not be induced to exert effort if it
receives a bad shock. As a result, both followers shirk.

Overall, transfers mitigate inefficient contagion ex-post. However, by doing so, transfers reduce
market discipline, increase centrality, and expose all followers to the leader’s idiosyncratic risk.
While mitigating second-order contagion, transfers increase first-order contagion, resulting in
greater welfare variance.

5.2 Epidemics and protective measures

This section examines a two-sided matching environment in the presence of an infectious
disease. For example, interactions between tutors and students or cashiers and grocery
shoppers can lead to the airborne transmission of a disease. Vaccines or masks can mitigate
the risk of transmission and alter the matching structure.

There are two types of agents, t ∈ {a, b}. There are two type-a agents, {a1, a2}, and two
type-b agents, {b1, b2}. Agents of the same type cannot match with each other. Type-a agents
do not refuse matches from type-b agents. Each type-b agent, bi, can match with one type-a
agent at a cost 1, or choose not to match at a cost 0. Matching with ai yields a payoff of vi
to type-b agents, where v1 > v2 > 0. This means that a1 is a more preferred match.

Each agent has a probability η of being infected externally. Matches can transmit the
infections internally, with a base transmission probability of τ0 if one agent in the match is
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infected and the other is not. A protective measure reduces the transmission probability by a
factor of m < 1, lowering it to τ = mτ0. The cost of becoming infected is κ.

We use the notion of (strong) stability which is equivalent to strong nash equilibrium in this
model.

Equilibrium Since a1 is preferred, both b-type agents prefer to match with a1 in the
absence of disease. However, when both type-b agents are matched with a1, one bi can
infect a1, who can then transmit the infection to the other bj. This introduces second-order
contagion. The efficacy of the protective measure m alters transmission probabilities and
influences the network structure as follows.

Proposition 7. There exist thresholds m3 ≤ m2 < m1 such that the unique stable network is
characterized as follows:11

• Low efficacy: If m1 < m, there are no matches.

• Medium-low efficacy: If m2 < m < m1, a1 has one match, and a2 has no matches.

• Medium-high efficacy: If m3 < m < m2, both a1 and a2 have one match each.

• High efficacy: If m < m3, a1 has two matches.

If η < 1/4, as the protective measure becomes more effective, both the expected number and
variance of infections increase at the threshold points m ∈ {m1,m2,m3}.

The network is depicted in Figure 5. As m decreases, indicating that the protective measure
becomes more effective, the network becomes more interconnected. At the threshold m1, it
becomes individually rational for bi to match with a1 provided that bj does not also match
with a1. At m2, matching with a2 similarly becomes rational. However, the expected cost of
second-order contagion remains high enough that it is still undesirable for both bi and bj to
match with the same agent. At m3, the second-order counterparty risk is sufficiently low,
allowing both type-b agents to match with the preferred agent, a1.

Figures 6 and 7 illustrate the distribution of infections and welfare, respectively.12 The
vertical lines in the figures correspond to m3. The increments at m1 and m2 are related to

11m1 ≡ m∗
1, m2 ≡ max{m∗

2,m
∗} ≤ m3 ≡ min {m∗∗,m∗} where m∗

i ≡ vi−1
κ(1−η)ητ0

, m∗ ≡
√

1+4
v1−1
κη −1

2(1−η)τ0
,

m∗∗ ≡
√
v1−v2√

κη(1−η)τ0
. Note that we either have m∗

2 < m∗ < m∗∗ or m∗
2 > m∗ > m∗∗ or m∗

2 = m∗ = m∗∗. So

m3 = m2 ⇐⇒ m∗
2 ≤ m∗∗ ⇐⇒ v2 − 1 ≤

√
κη(v1 − v2)

12η = 0.1, τ0 = 0.75, v1 = 3, v2 = 2.5, κ = 40
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m2 > m > m3

a1
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Figure 5: Strongly stable network of matches

Talamàs and Vohra (2020) as the number of matches rise at these thresholds. However, the
change at m3 represents a structural change. One type-b agent switches its match from a2

to a1. This occurs precisely because the protective measure becomes effective enough that
bi is less concerned about being infected by contagion originating from bj and transmitted
through a1.

When both type-b agents match with a1, the expected number of infections aligns with the
increased matching payoffs. More interestingly, both type-b agents are now exposed to the
exogenous infection risk of a1. The variance of infections increases due to the correlation
through a1’s infection probability.
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Figure 6: Mean and standard deviation of the number of infections

5.3 Supply chains and subsidies

This section examines inventory risk in supply chains. Downstream buyers face uncertain costs,
which leads to upstream suppliers facing uncertain demand and the risk of overproduction.
In turn, downstream buyers face the risk of under-provision if the upstream supplier does not
risk overproduction. Subsidies to downstream firms’ production costs can prevent this chain
reaction and alleviate inventory risk.
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Figure 7: Mean and standard deviation of welfare

Consider two upstream firms, indexed by u ∈ U = {u1, u2}, which supply substitute but
differentiated products to two downstream firms, indexed by d ∈ D = {d1, d2}. Each
downstream firm chooses a specific production technology that is compatible with the input
from only one of the upstream firms. Switching costs are sufficiently high such that once a
downstream firm chooses an upstream firm’s technology, the upstream firm becomes the sole
supplier to that downstream firm.

Each upstream firm u ∈ U requires a distinct external input supplied by another market. The
price of the external input for firm u is low, ku = k, with probability αu and high, ku = k′,
with probability 1− αu. This price ku reflects the conditions in the external market. The
expected price of the external input of one upstream supplier is slightly lower than for the
other, with αu1 = αu2 + ε for a sufficiently small ε > 0. (The gap can be larger; the small
gap is assumed for simplicity and clarity; the general case is discussed in the appendix.) The
production function of each u ∈ U converts qu units of external input into qu units of output.

Each downstream form d ∈ D requires two inputs: an internal input supplied by its chosen
upstream supplier and an external input supplied by another market. These two inputs are
perfect complements, meaning that qd = min{qind , qexd } units are produced with qind units of
the internal input and and qexd units of external input. The price of the external input is low,
cd = c with probability δ and high, cd = c′, with probability 1− δ.

Each downstream firm d ∈ D is a monopolistic supplier facing inelastic unit demand for
its output. The buyer has a value of p, so d sells at price p and captures all the surplus.
Upstream firms sell to downstream firms at price p′ < p. The fixed price p′ reflects the
exogenous bargaining power between upstream and downstream firms and it is not subject
to renegotiation.

Timing is as follows. First, downstream firms simultaneously choose their technologies
(suppliers). Then the prices of the external inputs of upstream firms, ku1 , ku2 , are realized
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independently. Then upstream firms build their inventory, qu1 , qu2 . After this, the prices of the
external inputs of downstream firms, dd1 , cd2 , are realized independently. Then downstream
firms purchase internal and external inputs, and produce qd1 , qd2 . Then consumers buy
outputs of the downstream firms.

High prices are assumed to be prohibitive to production: k′, c′ > p. Otherwise, there is no
risk. Similarly, low prices are not prohibitive: k < δp′ and c < p− p′. Otherwise, there is no
production. Only then firms face inventory risk.

If an upstream firm u has two downstream buyers but finds the probability of having 2

units of demand to be low, it will produce only 1 unit to minimize the expected cost of
overproduction. But then, if both downstream firms have low costs and each demands 1 unit,
the supply is exceeded. In this case, the available unit is supplied on a first-come-first-served
basis, with a 1/2 probability for each downstream firm. This risk of under-provision and the
competition for the unit supply can discourage downstream firms from choosing the same
supplier, even if one supplier is superior to the other.

Denote Du ⊂ D denote the downstream buyers of u ∈ U and Ud ∈ U denote the upstream
supplier of d ∈ D. If u faces a high price ku = k′, it does not produce and has a payoff of
vu = 0. Otherwise, u earns

vu = p′
∑
d∈Du

qd − kqu

Downstream d does not produce and has a payoff of vd = 0 if either its upstream supplier
Ud faces a high price k′ and does not supply, d has high price c′ and does not produce, or
Ud is the supplier for both downstream firms and supplies only the other downstream firm.
Otherwise, d is supplied a unit, produces, and earns

vd = (p− p′ − c) qd

Welfare and subsidies The economy is not perfectly competitive. So the prices cd and
ku do not represent the actual cost of producing the corresponding external inputs. Let
ei denote the domestic cost of procuring firm i’s external input. The total domestic costs
are then

∑
i eiqi. The total value generated by final consumption is p

∑
d qd, all of which is

extracted by firms. So absent subsidies, welfare is∑
i

vi = p
∑
d

qd −
∑
i

eiqi
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Shocks to prices can disrupt efficient production. The government can offer subsidies to firms
for their external inputs to restore efficient production. Let si denote the subsidy to i per
unit of external input purchased. This changes i’s payoff to vi + siqi. The total domestic cost
of these transfers is (1 + z)

∑
i siqi, where z represents a transaction cost, such as the cost

associated with distortionary taxation needed to fund subsidies. Thus, welfare is given by

w = 0 +
∑
i

(vi + siqi)− (1 + z)
∑
i

siqi

= p
∑
d

qd −
∑
i

(ei + zsi) qi

We focus on z ↓ 0 to simplify the algebra. Equivalently, z = 0 and the government implements
the minimal transfer necessary to induce the outcome that would be efficient. Additionally,
we assume ed = 0 whereas eu = ku. This means that the shocks faced by downstream firms
stem from financial conditions, while the shocks faced by upstream firms reflect real shocks.13

This setup highlights the role of subsidies in managing second-order contagion risk faced by
downstream firms due to the inventory risk of upstream suppliers.

Equilibrium The chosen supplier of d ∈ D may face a high price and decide not to produce,
creating first-order contagion risk for d. Upstream firms also face first-order contagion if their
downstream buyers encounter high prices and do not purchase inputs. Since upstream firms
must build inventory in advance, this first-order contagion can lead an upstream firm with
two buyers to produce only one unit instead of two, thereby creating second-order contagion
for downstream firms by reducing their probability of being supplied.

Proposition 8. Assume k > δ2p′. (Other cases are solved in the appendix.)

In the absence of subsidies, downstream firms choose different suppliers.
13External inputs for downstream firms are produced domestically in imperfectly competitive or monopolistic

markets. For example, wages for high-skilled labor, patent rentals, or solar energy are generated using
fundamental inputs that have relatively low marginal production costs. Shocks that are financial in nature,
such as inflation or financial instability, can increase the prices of these inputs without altering their marginal
production costs. A large shock to the price of an external input for a downstream firm reflects financial
conditions rather than economic efficiency at the broader economy level. Efficient production can be restored
through financial transfers to downstream firms, such as subsidies, to offset the increased prices of their
external inputs.

On the other hand, external inputs for upstream firms are produced either internationally or in perfectly
competitive domestic markets, where sale prices closely reflect the real costs of production. For instance, if a
critical intermediate product produced exclusively abroad becomes more expensive, the domestic economy
must absorb this increased cost. Similarly, if a natural disaster disrupts domestic supply chains, the marginal
costs of production can rise even if the market for the specific good remains competitive. In this case, a large
shock to the price of an external input for an upstream firm represents a shock to the cost of production of
the external input, leading to inefficiency in production at the broader economy level.
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In the presence of subsidies both downstream firms choose u1. Each downstream firm d

receives a subsidy sd = c′ − (p− p′) if u1 faces a low price of external input.

If αu1 < 1 − δ
2(1−δ)

, the expectation and variance of welfare is higher in the presence of
subsidies than in the absence of subsidies.

Upstream firm u1 is the preferred supplier because it entails lower first-order contagion cost
than u2. However, due to k > δ2p′, the expected demand from downstream firms is too low
relative to the cost of building enough inventory to supply both downstream firms. Even
when both downstream firms choose u1, u1 produces only one unit. Thus, each di faces
the risk of not being supplied. This scenario represents second-order contagion. Since the
difference in the exogenous risk αu between upstream firms does not differ significantly, one
downstream firm prefers slightly higher first-order contagion cost over higher second-order
contagion cost and chooses u2.

Because k′ > p, no upstream firm receives a subsidy when ku = k′. The domestic cost of
the external input for upstream firms is too high for efficient production. Downstream firms
receive subsidies whenever they face high prices that would otherwise hinder their production,
provided their upstream supplier faces low prices. This is because the external inputs of
downstream firms are produced at a lower cost, making it efficient to restore production.
Since the upstream firms do not face first-order contagion costs due to subsidies, they produce
enough to meet the equilibrium demand of their downstream buyers, thereby eliminating
second-order contagion. As a result, since the first-order contagion faced by downstream
firms due to their supplier’s prices remains unchanged, but second-order contagion risk that
their supplier transmits is eliminated. Both downstream firms choose the same supplier, u1.

Expected welfare naturally increases with subsidies since transactions costs are not present.
In the absence of subsidies, the presence of second-order contagion prevents downstream firms
from choosing the superior supplier. Subsidies remove this inefficiency. However, when both
downstream firms choose the same supplier, the idiosyncratic shock to the supplier becomes
a source of aggregate volatility. The common supplier is less risky but not entirely risk-free.

6 Conclusion

Networks provide substantial benefits but also introduce significant risks. Their structures in
various critical contexts create vulnerabilities that can spread and intensify contagion, such as
misinformation, systemic financial crises, global pandemics, and supply chain disruptions. We
show that measures intended to mitigate contagion can backfire by promoting riskier network
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configurations and increased centrality. A particularly nuanced dynamic is that agents shift
their exposure from contagion spreading through the network to individual risks originating
from their direct connections. As mitigation tools become more effective, agents’ discipline
against contagion weakens, a tendency that is amplified by the network structure, leading to
greater contagion, reduced welfare, and increased volatility. This overarching phenomenon,
termed “network hazard,” represents a collective moral hazard where endogenous network
responses undermine the intended effects of interventions.
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A Proofs

A.1 Main model

(Proof of Proposition 1) Straightforward following the paragraphs after the result.

(Proof of Proposition 2) For any given n, welfare is

W =

ˆ
L

uidi =

ˆ
N

uidi = nυ −
ˆ
L

(pi − ωi) di = nυ − nδpo

We also have
po = ωo + α

ˆ
N

pidi = ωo + αn (ω + δpo)

so that
po =

ωo + αωn

1− αδn
=

1

δ

(
ωoδ + ω

1− αδn
− ω

)
In equilibrium, we have n∗ = 1

α(ω′+υ)

(
υ
δ
− ω

)
. So welfare is

W ∗ = n∗ (υ − δpo) =
υ − δω

α (ω + δω)
(ω − ωo)

(Proof of Theorem 1) By Proposition 2, E[W ] is increasing, E[K] and V[W ] are decreasing
in θ. Then E[W̃ ] is decreasing whereas E[K] and V[W̃ ] are increasing in θ − θ̂. So optimal
policy is to no prevention.

(Proof of Proposition 3) First note that the principal must pick θ̂ such that the cost of
contagion K(θ̂, n) is not infinite. This corresponds to α̂δn < 1 or αδ̂n < 1 if θ ∈ {α, δ}. If
θ = ω we can assume αδn < 1. Leaves would not connect up to αδn ≥ 1 because ω > 0. So
we can focus on finite K(θ̂, n). We have K ′

1(θ̂, n) > 0 and nK ′
1(θ̂, n) is increasing in θ̂ and n.

The problem of the principal is to maximize −nK(θ̂, n) − 1
η
c(θ̂; θ). The derivative is

−nK ′
1(θ̂, n) − 1

η
C ′(θ̂) =

(
Φ(θ̂, n)− η

)
nK′

1(θ̂,n)

η
where Φ(θ̂, n) = −c1(θ̂;θ)

nK′
1(θ̂,n)

. By convexity,

−c1(θ̂; θ) ≥ 0 is decreasing in θ̂. Combining this with nK′
1(θ̂,n)

η2
> 0 and the monotonic-

ity of nK ′
1(θ̂, n), we find that Φ is decreasing in θ̂ and n.
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Take η = Φ(θ, n∗) ≥ 0. (Equality holds iff c1(θ; θ) = 0.) At n = n∗, the solution is θ̂n = θ iff
η ≤ Φ(θ, n∗). For η < Φ(θ, n∗), when an agent or a small group deviates from n = n∗, θ̂ = θ

still holds after the deviation. Thus n = n∗ is an equilibrium as we established in the baseline.
When η = Φ(θ, n∗), the stability of the solution depends on details of the cost function.

Take η = Φ(θ, n) > 0. For n, the solution is θ̂n = θ iff η ≥ Φ(θ, n). Let n∗∗ be the solution
to the indifferent condition given θ. For η > Φ(θ, µ), when a single leaf or a small group
deviates from n = n∗∗, θ̂ = θ still holds after the deviation.

(Proof of Theorem 2) Case of α̂: Expected welfare is n
(
υ − δ(1+α̂n)ω

1−α̂δn

)
− 1

η
1

1+γ
(α− α̂)1+γ.

Assume interior solution solution α̂n ∈ (0, α). Then the FOC δ(1+δ)ωn2

(1−α̂nδn)
2 = 1

η
(α− α̂n)

γ holds.
This implies a unique and decreasing α̂n.

The individual cost of contagion is δ(1+α̂nn)ω
1−α̂nδn

∝ α̂nn ≡ mn. Note, the individual cost of conta-
gion must be increasing in n. Otherwise, an arbitrarily small group would deviate together and
form connections. The FOC can be restated in terms of mn and α̂n as δ(1+δ)ωm2

n

(1−mnδ)
2α̂2

n
= 1

η
(α−α̂n)

γ .

Taking the derivative wrt n, we have m′
n

(
1

mn
+ δ

1−mnδ

)
= α′

n

(
1
α̂n

− γ
2

1
α−α̂n

)
. So n is stable

if and only if 1
α̂n

< γ
2

1
α−α̂n

.

The stable interior solution is characterized by three conditions: (i) 1
α̂η

< γ
2

1
α−α̂η

, (ii) the

FOC δ(1+δ)ωn2
η

(1−α̂ηδnη)
2 = 1

η
(α − α̂η)

γ, and (iii) the indifference condition δ(1+α̂ηnη)ω

1−α̂ηδnη
= υ. By (iii)

mη = α̂ηnη < 1
δ

and mη is constant in η. Then by (ii) and n < 1
δα

, we have limη→0 α̂η = α.
Then (i) is automatically satisfied by γ > 0, for small η. Then the FOC and the indifference
condition characterize interior stable equilibria. Note that by limη→0 α̂η = α and (iii) imply
that limη→0 nη = n∗ of the baseline,

By the FOC and the indifference condition, the cost of the intervention is

1

η
(α− α̂η)

1+γ =
(FOC)

1

η

(
η
δ (1 + δ)ωn2

η

(1− α̂ηδnη)
2

) 1+γ
γ

∝η
(indif.)

η
1

2(γ+1)

α̂η

Note that for small η, α̂η is decreasing. This can be observed by taking the derivative of the
FOC δ(1+δ)ωm2

(1−mδ)2α̂2
η
= 1

η
(α− α̂η)

γ w.r.t. η, which gives 1
η
= −α̂′

η

(
γ

α−α̂η
− 2

α̂η

)
. Therefore, the cost

of intervention is increasing in η.

The link benefits net of cost of contagion is 0 in expectation. So welfare is decreasing in η.

Variance of welfare is V
[
nη

(
υ − δ(ωo+α̂ηnηω)

1−α̂ηδnη

)]
∝η nη which is also increasing in η by n′

η > 0.

Case of δ̂: Similar arguments work. The FOC is nω(1+αn)

(1−αδ̂nn)
2 = 1

η
(δ− δ̂n)

γ . By the FOC, for any

small η, the individual cost of contagion δ̂nω(1+αn)

1−αδ̂nn
is increasing in n at equilibrium n = nη, δ̂η
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is decreasing and nη is increasing. Expected welfare is the cost of intervention, given by

1

η
(δ − δ̂η)

1+γ =
(FOC)

1

η

η
nηω (1 + αnη)(
1− αδ̂ηnη

)2


1+γ
γ

∝η
(indif.)

1

δ̂2η

(
1
nη

+ α
)η 1

2(γ+1)

which is increasing in η. So welfare is decreasing. Variance of welfare is V
[
nη

(
υ − δ(ωo+αnηω)

1−αδ̂ηnη

)]
∝η

nη

1−αδ̂ηnη
∝η

1

δ̂η
(

1
nη

+α
) which is increasing in η.

Case of ω̂: The FOC is n(1+αn)
1−αδn

= 1
η
(ω − ω̂n)

γ. For small η, the individual cost of contagion
1+αn
1−αδn

ω̂n is increasing in n at equilibrium n = nη for any small η, ω̂n is decreasing, and nη is
increasing. The cost of intervention is

1

η
(ω − ω̂η)

1+γ =
(FOC)

1

η

(
η
nη (1 + αnη)

1− αδnη

) 1+γ
γ

∝η
nη (1 + αnη)

1− αδnη

η
1

2(γ+1)

which is increasing in η. So welfare is decreasing. The variance of welfare is V
[
nη

(
υ −

δ
(

ω̂η
ω

ωo+αnηω̂η

)
1−αδnη

)]
∝η

nηω̂η

1−αδnη
∝η

(indiff)

nη

1+αnη
which is increasing in η.

(Proof of Theorem 3) For a given n, welfare is n
(
υ − δ ωo+αnω

1−αδn

)
= n

(
υ + ω − δωo+ω

1−αδn

)
. So

optimal policy is to interfere iff υ+ω− δωo+ω
1−αδn

< −κ. When there is a interference, each agent
has 0 payoff. Thus the individual expected payoff is

1− αδn

4ωδ

(
max

(
−κ, υ + ω − ω

1− αδn

)2

−max

(
−κ, υ + ω − 2ωδ + ω

1− αδn

)2
)

If −κ > υ + ω − ω
1−αδn

, there is always interference irrespective of ωo, and each agent has 0

payoff. But such n is not robust to a small probability of interference failing. Each connected
leaf would have negative payoff υ + ω − δωo+ω

1−αδn
< −κ when the interference fails.

If υ + ω − 2ωδ+ω
1−αδn

> −κ, there is never interference. If there is no interference, the baseline’s
network emerges. But in that network, υ+ω = ωδ+ω

1−αδn
so υ+ω− 2ωδ+ω

1−αδn
= (υ + ω)

(
1− 2δ+1

δ+1

)
=

− (υ + ω) δ
δ+1

. Thus the baseline is an equilibrium when κ > (υ+ω)δ
δ+1

≡ κ.

If υ + ω − 2ωδ+ω
1−αδn

< −κ < υ + ω − ω
1−αδn

, expected payoff is

1− αδn

4ωδ

((
υ + ω − ω

1− αδn

)2

− κ2

)

33



This has two roots, υ+ω− ω
1−αδn

= ±κ. This is decreasing in n at the solution υ+ω− ω
1−αδn

=

−κ, so the stable solution is υ + ω − ω
1−αδn

= κ.

Also recall the supposition of the case:

−κ > υ + ω − 2ωδ + ω

1− αδn
= υ + ω − (2δ + 1) (υ + ω − κ)

which is equivalent to κ < (υ+ω)δ
δ+1

.

The solution nκ is pinned by υ+ω− ω
1−αδnκ

= κ and it is decreasing in κ. Denote x = ω
1−αδnη

and y = υ + ω. The expected cost of interference is

κnκP
[
−κ > υ + ω − δωo + ω

1− αδnκ

]
= κnκ

1− αδnκ

4ωδ

(
−κ−

(
υ + ω − 2δω + ω

1− αδnκ

))
=

δ + 1

2αδ2
κ

(
1− ω

υ + ω − κ

)
1

υ + ω − κ

(
δ

δ + 1
(υ + ω)− κ

)
This is decreasing in κ at (υ+ω)δ

δ+1
= κ. So there is κ such that on κ ∈ (κ, κ), welfare is

increasing in κ.

(Proof of Theorem 4) Follows by algebra upon the discussion after the result.

(Proof of Proposition 4) Fix t and k. Pick any i ∈ Rt and any j ∈ Rt+k downstream i.

All potentials are linear in all shocks. So denote ∂k =
dpj
dωi

the coefficient of ωi in pj. Then
recursively we have

∂0 = 1 + αni∂1

∂1 = δ∂0 + αb∂2

...

∂k = δ∂k−1 + αb∂k+1

...

∂T−t−1 = δ∂T−t−2 + αb∂T−t

∂T−t = δ∂T−t

Define a recursive sequence αbzk−zk−1+δzk−2 = 0 whose solution is given by zk = Aζk1 +Bζk2

where ζ1 =
1+

√
1−4δαb
2αb

> 1 > ζ2 =
1−

√
1−4δαb
2αb

and A,B are constants. (Note ζ2 = e.)

Then ∂k sequence can be found by using a suitable z sequence. Pin down A and B (hence
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the z sequence) with

zT−t
b′

b
= δzT−t−1

z0 = 1 + αniz1

Then ∂k sequence is given by ∂k = zk for k = 0, ..., T − t− 1 and ∂T−t = zT−t
b′

b
.

The conditions that pin A and B are equivalent to

(
AζT−t

1 +BζT−t
2

)
b′ = bδ

(
AζT−t−1

1 +BζT−t−1
2

)
A+B = 1 + αni (Aζ1 +Bζ2)

Then

A =
(ζ2b

′ − bδ)

(ζ2b′ − bδ) (1− ζ1αni)−
(

ζ1
ζ2

)T−t−1

(ζ1b′ − bδ) (1− ζ2αni)

B =
(ζ1b

′ − bδ)

(ζ1b′ − bδ) (1− ζ2αni)−
(

ζ2
ζ1

)T−t−1

(ζ2b′ − bδ) (1− ζ1αni)

Then,

∂k = zk = Aζk1 +Bζk2 =
ζk2

1− ζ2αni

(
1 +O

(
(ζ2/ζ1)

T
))

(Proof of Proposition 5) All potentials are linear in all shocks. So welfare is linear in all
shocks. Effects of all shocks but ωo wash out by law of large numbers. So W is linear in ωo,
with slope ET by definition. By the indifference conditions E[W ] = 0. Combining these we
get W = ET (ω − ωo).

Regarding lnET , continuing with the proof of Theorem 4. We have

∂T = zT
b′

b
=

b′

b

(
AζT1 +BζT2

)
=

b′

b

(
(bδ) (ζ1 − ζ2) ζ

T−1
1 ζT−1

2

ζT−1
1 (ζ1b′ − bδ) (1− ζ2αr)− ζT−1

2 (ζ2b′ − bδ) (1− ζ1αr)

)
Note ET = rbT−2b′∂T as there is rbT−2b′ λT -measure of leaves whose potential’s (hence
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payoff’s) derivative with respect to ωo is ∂T . Then using also ζ1ζ2 =
δ
αb

we have

ET = rbT−2b′∂T =
δrb′2 (ζ1 − ζ2)

b
(ζ2b)

T−1 1

(ζ1b′ − bδ) (1− ζ2αr)−
(

ζ2
ζ1

)T−1

(ζ2b′ − bδ) (1− ζ1αr)

So
ln (ET ) = ln

(
rbT−2b′∂T

)
= T ln (eb) + o(1)

Note

e = δ + αbe2 =⇒ αbe = αbδ + (αbe)2

=⇒ αbe = δ
(
1− δ

(
1 +

ω

υ

))
+ (αbe)2 =⇒

be =
1−

√
1− 4δ

(
1− δ

(
1 + ω

υ

))
2α

=
1−

√
(1− 2δ)2 + (2δ)2 ω

υ

2α

(Proof of Theorem 5) be is decreasing in α and ω. Regarding δ, be is decreasing in δ if
and only if 4δ

(
1− δ

(
1 + ω

υ

))
is decreasing, which is equivalent to 1 < 2δ

(
1 + ω

υ

)
.

A.2 Standalone applications

Notation. Throughout the rest of the appendix we denote by x = p1 ◦ x1 ⊕ p2 ◦ x2 ⊕ ... a
random variable that takes value xi with probability pi for each i. Also B[k, x] is the binomial
distribution with k tries and x success probability. Welfare in the absence of interventions is
denoted w whereas welfare in the presence of interventions is denoted w′.

A.2.1 Coordination games and interventions

(Proof of Proposition 6) Corollary of Propositions 9, 10, 11.

Define parameters more generally. Let αi, βi, gi be heterogenous and depend on the “type”
f and l. Assume αf ≥ αl, βf > gf , βl > gl, 2αf > 1. Denote κ ≡ c

βf−gf
, ω ≡ βl − 2gl,

ω′ = βf − gf .

Proposition 9. The unique stable network is given as follows.

Under ω < 0, both followers follow if αlα
2
f > κ, only one follow if αlαf > κ > αlα

2
f , and none

follow if κ > αlαf .

Under ω > 0, both followers follow if αlαf > κ, and none follow if κ > αlαf .
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Proof. There are three possible networks; no links, one link, two links. As the bad shock
bi is arbitrarily large, any agent with a bad shock chooses ai = 0. Also, if fi follows and l

chooses 0, then fi chooses 0 because gf > 0.

Under βl < 2gl, if l has two followers and at least one chooses 0, then l chooses 0 by βl < 2gl.
This implies that in equilibrium, in a connected component with at least one link, all agents
choose 0 if at least one agent has a bad shock, and all agents choose 1 if no agent has
a bad shock. Then l’s expected payoff as a function of the number of its followers d is
Ul,d = αlα

d
fd (βl − gl). By 2αf > 1 and βl > gl, Ul,d is increasing in d ≤ 2. So l prefers to

have more followers.

The payoff of fk if both f1, f2 are connected to l is Uf,2 = αlα
2
f (βf − gf ) − c. If one is

connected and the other is not, the one that is connected has Uf,1 = αlαf (βf − gf ) − c.
Notice Uf,1 > Uf,2. Then if Uf,2 > 0 both followers follow l. If Uf,1 > 0 > Uf,2, then one
follows and the other does not. If Uf,1 < 0 there are no links.

Under βl > 2gl, l chooses 0 if and only if l gets a bad shock or all of its connections get bad
shocks. In either case, all agents choose 0. If l gets a good shock, each f chooses with its
own shocks: 0 if and only if the shock is bad. Then l’s expected payoff as a function of the
number of its followers is Ul,1 = αlαf (βl − gl) or

Ul,2 = αl

(
α2
f2 (βl − gl) + 2αS(1− αS) (βl − 2gl)

)
> αlα

2
f2 (βl − gl) > αlαf (βl − gl) = Ul,1

by 2αf > 1. So l prefers to have more followers.

When fi gets a good shock, l chooses 0 only when l gets a bad shock. So the payoff of fi is
Uf,1 = αfαl (βf − gf )− c if it follows, and 0 otherwise. If Uf,1 > 0, i.e. κ < αlαf both follow
l. Otherwise there are no links.

Proposition 10. Under ω+ω′ < 0 or ω > 0 there are no transfers. Accordingly, the unique
stable network is the same with the one in the absence of interventions.

Under ω′ + ω > 0 > ω, tl(1|e, θ) = −ω if l has two followers, for one i ∈ {1, 2}, l and fi

have good shocks and fj has a bad shock. All other transfers are 0 in all other cases of shock
realizations and networks. The unique stable network involves two links if αlαf > κ and no
links if αlαf < κ.

Proof. Consider the auxiliary problem of choosing an action profile a to maximize V =∑
i

(
ai
∑

j (βijaj − θi) eij

)
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Given that bi is large enough, a∗i = 0 if θi = bi. Given this,

V =
∑

i:θi=gi

ai

 ∑
j ̸=i:θj=gj

βijajeij

− digi


=
∑

i:θi=gi

∑
j ̸=i:θj=gj

aiajβijeij −
∑

i:θi=gi

aidigi

If i has no links, i’s action is efficient. So there are no transfers.

If i has links but all of i’s links have bad shocks, then a∗i = 0 to save on
∑

i:θi=gi
aidigi even if

i has a good shock.

If i has a good shock and it has a link with a good shock, say j, then there are two cases. If
the third agent also has a good shock, there is no need for transfers; all agents choose 1. If
the third agent is has a bad shock there are two cases. If the third agents is not connected
to i or j, then i and j do not need transfers and they choose 1. So the only case there can
possibly be an optimal and positive transfer is when all agents are connected, l and one fi

have good shocks, and other fj has a bad shock. Due to the complementarities, it is either
optimal that l and fi both choose 0 or they both choose 1. If they both choose 0, V = 0. If
they both choose 1, V = V ∗ ≡ βl + βf − 2gl − gf .

If V ∗ < 0, then W ≤ 0. Then choosing t = 0 implements that optimal action profile. In this
case there are never any transfers and the network formed is the same with the absence of
interventions.

If V ∗ > 0, optimal action profile is implemented by

tl(1) = (2gl − βl)
+ , tl(0) = 0

tfk(1) = (gf − βf )
+ = 0, tfk(0) = 0

tfk′ = 0

If 2gl < βl, there is no need for transfers: t = 0 and l chooses 1. If 2gl > βl, then an f agent
has expected payoff Uf,1 = αlαf (βf − gf )− c regardless of whether the other f agents has
a link with l or not. l, conditional on degree d, has expected payoff Ul,d = αlα

d
fd (βl − gl)

which is increasing in d. Thus the unique stable network has two links if αlαf > κ and 0

links if αlαf < κ.

Proposition 11. Assume ω′ > −ω > 0 and αlαf > κ > αlα
2
f . Variance of welfare is larger

in the presence of interventions than in the absence of interventions. The change in the
expectation of welfare can be positive or negative depending on parameters.
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Proof. Denote vf = βf − gf , vl = βl − gl.

w + c =(αlαf ◦ (vf + vl) + 0)

E[w] = αlαf (vf + vl)− c

Val[w] = αlαf (1− αlαf ) (vf + vl)
2

Some algebra yields that in the presence of interventions

w′ + 2c = α2
fαl ◦ (2vf + 2vl)⊕ 2(1− αf )αfαl ◦ (vl − βl + vf )

⊕ (1− αf )
2αl ◦ 0⊕ (1− αl) ◦ 0

E[w′] = 2αfαl (vf + vl − (1− αf )βl)− 2c

Val[w′] = 2αlαf (1− αf )
[
(vf + vl)

2

+ (1− 2(1− αf )αf ) βl + 2 (2αf − 1) βl (vl + vf )
]

+ 4αl (1− αl)α
2
f (vf + vl − (1− αf )βl)

2

Then by rearranging terms we get

Val[w′]− Val[w] = (1 + 2αf − 3αfαl) (vf + vl)
2+

+ 2 (1− αf ) (1− 2αlαf (1− αf )) βl − 4 (1− αf ) (1− 2αlαf ) (vl + vf ) βl

> 0 ⇐= (1 + 2αf − 3αfαl) (1− 2αlαf (1− αf )) > 2 (1− αf ) (1− 2αlαf )
2

Denote x = αlαf and y = 1− αf . Then

Val[w′]− Val[w] > 0 ⇐=

Q[x; y] ≡ − (2y)x2 + x
(
−3 + 4y2 + 2y

)
+ (3− 4y) > 0

Q is a concave quadratic in x. The end points for x are given by x = αlαf ∈ [0, α2
f ] =

[0, (1− y)2]. Given that y = 1−αf < 0.5, at both end points x = 0 and x = (1− y)2, Q[0; y]

and Q[(1− y)2 ; y] are positive. So Q[x; y] is positive.

The difference in mean is

E[w′]− E[w] = αfαl (vf + vl − 2(1− αf )βl)− c

which can be positive or negative. Pick any αf > 0.5, any αl < αf , any βf > vf > βl−2vl > 0,
and let c = αfαl (vf + vl − 2(1− αf )βl)−x. (Note that E[w′]−E[w] = x) This clearly implies
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all parametric conditions except αlαf > c
vf

> αlα
2
f . Note

αlαf >
αfαl (vf + vl − 2(1− αf )βl)− x

vf
> αlα

2
f

⇐⇒ 0 < 2βl −
vl

(1− αf )
+

x

(1− αf )
< vf

Then by assuming
0 < 2βl −

vl
(1− αf )

< vf

x can have positive or negative sign. For example, αf > 0.5, αl < αf , βf > vf > βl > 0 and
vl < min

{
1
2
, 2 (1− αf )

}
βl satisfies all conditions.

A.2.2 Epidemics and protective measures

(Proof of Proposition 7) Stability part:

The payoff to a b-type from having no matches is V0 = −κη. The payoff to a b-type from
being matched to aj if aj has no other match is V0 + Vj where Vj = vj − 1− κ(1− η)τη. The
payoff to a b-type from being matched to aj if aj has one more match is V0 + Vj −∆ where
∆ = κ(1− η)τ(1− η)ητ .

It is easy to see that the stability is characterized as follows. V1 < 0, there are no links.
If V1 > 0 > max {V2, V1 −∆}, then one matched to a1, the other no matches. If V2 =

max {V2, V1 −∆} > 0, then one to a1 one to a2. If V1 − ∆ = max {V2, V1 −∆} > 0, then
both matched to a1. Regarding m, these bounds correspond to

Vi < 0 ⇐⇒ m∗
i ≡

vi − 1

κ(1− η)ητ0
< m

V1 −∆ < 0 ⇐⇒ m∗ ≡

√
1 + 4v1−1

κη
− 1

2(1− η)τ0
< m

V1 −∆ < V2 ⇐⇒ m∗∗ ≡
√

v1 − v2
κη(1− η)2τ 20

< m

Then the conditions are: If m > m∗
1, there are no links. If m∗

1 > m > max {m∗
2,m

∗}, then
one matched to a1, the other no matches. If m∗

2 > m > m∗∗, then one to a1 one to a2. If
min {m∗∗,m∗} > m, then both matched to a1. Note

m∗
2 > m > m∗ ⇐⇒ V2 > 0 > V1 −∆ =⇒ V2 > V1 −∆ ⇐⇒ m > m∗∗
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meaning m∗
2 > m∗ =⇒ m∗ > m∗∗ by picking m = m∗ + ϵ. Also,

m∗
2 < m < m∗ ⇐⇒ V2 < 0 < V1 −∆ =⇒ V2 < V1 −∆ ⇐⇒ m < m∗∗

meaning m∗
2 < m∗ =⇒ m∗ < m∗∗by picking m = m∗ − ϵ. So we have either m∗

2 > m∗ > m∗∗

or m∗
2 < m∗ < m∗∗.

Consider m∗
2 < m∗ < m∗∗. If m > m∗

1, there are no links. If m∗
1 > m > m∗, then one matched

to a1, the other no matches. If m∗ > m, then both matched to a1.

Next consider m∗
2 > m∗ > m∗∗. If m > m∗

1, there are no links. If m∗
1 > m > m∗

2, then one
matched to a1, the other no matches. If m∗

2 > m > m∗∗, then one to a1 one to a2. If m∗∗ > m,
then both matched to a1.

Thus by defining m1 ≡ m∗
1, m2 ≡ max{m∗

2,m
∗} ≤ m3 ≡ min {m∗∗,m∗}, we complete the

proof.

Welfare part:

When both b-types are matched to the same a-type, the number of infections X, its mean,
and its variance are

X = B[1, η] +
[ (

η3 + η2 (1− η) (4− τ) τ + 3 (1− η)2 ητ 2
)
◦ 3

⊕
(
η2 (1− η) (1− τ) (3− τ) + 4η (1− η)2 τ (1− τ)

)
◦ 2

⊕
(
η (1− η)2 (1− τ) (3− τ)

)
◦ 1⊕ (1− η)3 ◦ 0

]
E[X] = η(4 + τ(1− η)(4 + (2− 3η)τ))

Var[X] = (1− η)η

(
12τ(τ + 1) + 4− ητ

(
τ
(
(2− 3η)2(1− η)τ 2

+ 8(1− η)(2− 3η)τ + 45− 34η
)
+ 16

))

When b-type agents are matched to separate a-type agents

X =
[(
η2 + 2η(1− η)τ

)
◦ 2⊕ (2η(1− η)(1− τ)) ◦ 1⊕ (1− η)2 ◦ 0

]
+
[(
η2 + 2η(1− η)τ

)
◦ 2⊕ (2η(1− η)(1− τ)) ◦ 1⊕ (1− η)2 ◦ 0

]
E[X] = 4η (1 + (1− η)τ)

Var[X] = 4η(1− η)
(
1 + (3− 4η) τ + 2η(1− η)τ 2

)
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When only one b-type agent is matched to an a-type agent, and the others have no matches,

X =
[(
η2 + 2η(1− η)τ

)
◦ 2⊕ (2η(1− η)(1− τ)) ◦ 1⊕ (1− η)2 ◦ 0

]
+ B[2, η]

E[X] = 2η (2 + (1− η)τ)

Var[X] = 2η(1− η)
(
2 + (3− 4η) τ + 2η(1− η)τ 2

)
When there are no matches, the X is B[4, η]. The expectation is 4η. The variance is 4η(1−η).

Focus on the case of m∗
2 > m∗ > m∗∗. As m goes down, at m = m1 = m∗

1, the network
switches from empty to having one link. Expectation and variance clearly increase. At
m = m2 = m∗

2, the network switches from one match to two separate matches. Then
expectation and variance change by

∆E[X] = [4 (η + (1− η)τη)]− [2 (2η + (1− η)τη)] = 2(1− η)τη > 0

∆Var[X] =
[
4(1− η)

(
η + (3− 4η) τη + 2(1− η)τ 2η2

)]
−
[
2(1− η)

(
2η + (3− 4η) τη + 2(1− η)τ 2η2

)]
= 2(1− η)

(
(3− 4η) τη + 2(1− η)τ 2η2

)
> 0

At m = m3 = m∗∗ expectation and variance change by

∆E[X] = η(4 + τ(1− η)(4 + (2− 3η)τ))− 4
(
η + (1− η)τ 2η

)
= (1− η)(2− 3η)τ 2η > 0

∆Var[X] = (1− η)η

(
12τ(τ + 1) + 3− ητ

(
τ
(
(2− 3η)2(1− η)τ 2

+ 8(1− η)(2− 3η)τ + 45− 34η
)
+ 16

))
+ η(1− η)

− 4η(1− η)
(
1 + (3− 4η) τ + 2η(1− η)τ 2

)
> 0 ⇐⇒

− (2− 3η)2τ 4η2 + 8(2− 3η)τ 2η +
η (12− 53η + 42η2)

1− η
> 0

where the last inequality holds by η < 1/4 and τ 2η > 0.

Next consider m∗
2 < m∗ < m∗∗. At m = m∗

1, expectation and variance clearly increase. At
m2 = m1 = m∗, network switches from one link to both b-type agents having a match with
a1. Then expectation and variance change by the sum of the two ∆Exp and ∆Var terms
above, which are both positive. So both changes are positive.
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A.2.3 Supply chains and subsidies

(Proof of Proposition 8) Corollary of Propositions 12, 13, 14.

Proposition 12. If αu2

αu1
> 1−δ+ δ

2
and k > δ2p′, downstream firms choose separate suppliers.

Off-the-path, if both downstream firms choose u and u has low cost, it produces 1 and supplies
at most one downstream firm.

If αu2

αu1
< 1 − δ + δ

2
and k > δ2p′, both downstream firms choose u1. If u1 has low cost, it

produces 1 and supplies at most one downstream firm.

If k < δ2p′, both downstream firms choose u1. If u1 has low cost, it produces 2 and supplies
each downstream firm that has a low cost.

Proof. Take u and consider Du = {d}. Conditional on good shocks and being supplied, the
downstream firm has ex-post payoff −c+ p− p′ from production, so it produces if supplied.
The supplier u has interim payoff −k + δp′ > 0 from production so it produces and supplies.

Consider Du = D. Conditional on good shocks and being supplied, d has ex-post payoff
−c + p − p′. The supplier u can produce 1 or 2. If it produces 1, it has interim payoff
−k + 2δ(1− δ)p′. If it produces 2, it has interim payoff −2k + (δ2 + 2δ(1− δ)) p′. Then it
produces 1 if and only if k > δ2p′.

Then under k < δ2p′, both downstream firms choose u1 as αu1 > αu2 . Under k > δ2p′, if both
downstream firms choose u1 they each have ex-ante payoff αu1δ

(
1− δ + δ

2

)
(−c+ p− p′). If

they choose separate suppliers, the one with smaller payoff has ex-ante payoff αu2δ (−c+ p− p′).
Then they choose separate suppliers if and only if αu2

αu1
> 1− δ + δ

2
.

Proposition 13. In the presence of subsidies, each downstream firm d ∈ D receives sd =

c′ − pD if its supplier has low cost. Upstream firms do not receive subsidies. Both downstream
firms choose u1.

Proof. Given ed = 0 and eu = ku, welfare is given by
∑

d∈D pqd −
∑

u∈U kuqu. Since k′ > p,
w is maximized by qd = 1 if kud

= k and qd = 0 otherwise. The minimal subsidies that
implement this outcome is sd = c′ − pD if cd = c′, which induces d to produce, and all other
subsidies are 0. Then an upstream firm u with two downstream buyers and a good shock
has payoff qu (−k + p′) from producing qu, so it produces 2. This means both downstream
are supplied conditional on their supplier getting a good shock so they both choose u1 as
αu1 > αu2 .

Proposition 14. Suppose that αu2 ≈ αu1 = α < 1− δ
2(1−δ)

and k > δ2p′. Expectation and
variance of welfare is larger in the presence of subsidies than in the absence of subsidies.
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Proof. In the absence of interventions,

w = (αu1δ ◦ (p− k)⊕ αu1 (1− δ) ◦ (−k)⊕ (1− αu1) ◦ 0)

+ (αu2δ ◦ (p− k)⊕ αu2 (1− δ) ◦ (−k)⊕ (1− αu2) ◦ 0)

E[w] = (αu1 + αu2) (δp− k)

Var[w] = αu1δ (1− αu1δ) p
2 + αu1(1− αu1)k

2 − 2δαu1(1− αu1)pk

+ αu2δ (1− αu2δ) p
2 + αu2(1− αu2)k

2 − 2δαu2(1− αu2)pk

In the presence of interventions,

w′ = αu1 ◦ 2(p− k)⊕ (1− αu1) ◦ 0

E[w′] = 2αu1(p− k)

Var[w′] = αu1 (1− αu1) 4(p− k)2

Clearly E[w′] > E[w]. Let α ≈ αui
. Then

Var[w′] > Var[w] ⇐⇒ αu1 (1− αu1) 4(p− k)2 >

αu1δ (1− αu1δ) p
2 + αu1(1− αu1)k

2 − 2δαu1(1− αu1)pk

+ αu2δ (1− αu2δ) p
2 + αu2(1− αu2)k

2 − 2δαu2(1− αu2)pk

⇐⇒
(
2− δ

1− αδ

1− α

)
+

(
k

p

)2

− (4− 2δ)

(
k

p

)
> 0 ⇐= 1− δ

2 (1− δ)
> α
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