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Abstract

We propose a model of network formation where agent’s payoffs depend
on the connected component they belong to in a way that is specific enough
to be tractable yet general enough to accommodate a number of economically
relevant settings. Among them are formation in the presence of contagion via
links and collaboration with spillovers. A key feature of this setting is that the
externalities stem from links rather than nodes. We characterize stable and
efficient networks. Under negative externalities, disjoint cliques are stable and
efficient. Under positive externalities complete networks and star networks are
stable. Efficient networks feature a mix: pineapple networks which consist of
one large clique and a star network appended to each other.
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1 Introduction

We propose a model of network formation where an agent’s payoff depends on the
connected component they belong to in a way that is general enough to accommodate
a number of economically relevant settings, yet specific enough to be tractable. An
agent’s payoff depends on own degree and the number of links in the component it
belongs to. Formally, the utility of an agent is denoted U(d, e) where d is its degree
in the network and e is the number of links in the component that contains it.

U increasing in d but decreasing in e captures negative link-externalities. Links
incident to oneself are beneficial but links incident to others are not. This would
hold in a model of club formation where friends of friends invited into the club create
negative externalities because of the competition for scarce club resources.1 Suppose
an agent agent can only join one club. The benefit of doing so arises from a direct
connection to other individuals in the club. All agents in the same component are
part of the same club. A link between a pair represents the pairwise activities/events
that benefit the pair. Each such activity consumes club resources. Unused club
resources are used for public goods that benefit the whole club. For example, if b is
the total club budget, c the cost of each activity, r the benefit to the parties from
the activity/event, then, the payoff function is U(d, e) = rd + V (b − ec) where V (·)
is the benefit from the public good provision within the club. A similar trade-off is
present in the formation of file sharing networks Neglia et al. (2007).

Our formulation also encodes, in reduced form, the effect of contagion through link
rather than node failure.2 Link failure is responsible for performance degradation in
the power grid and communication networks. An overloaded link can lead to capacity
loss and result in cascading breakdowns. Damage to optical fiber cables can partially
overload data delivery, resulting in a regional interruption of Internet services. In
an economic context suppose firms enjoy a benefit from each direct link to other
firms via a joint venture. The venture is risky and can fail which may cause the
counterparties financial distress and force them into default. Even if a venture does
not fail, a defaulting counterparty to the venture may cause one to default. Therefore,
each firm bears a default risk from each direct and indirect linkage to other firms.

1Initial social interactions between individuals often occur within social clubs such as fraternities.
2Existing contagion models, for example Kempe et al. (2003), focus on contagion that starts with

nodes. In these models links serve only as a conduit for externalities.
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Whenever, one of the links in the component containing the firm is hit by a negative
shock, then all firms in the same connected component face a default risk (see Erol
and Vohra (2022) for a detailed specification). More generally, the institutions that
underpin contracts and facilitate business transactions decline in quality. This makes
the associated bilateral relationship more prone to a disruption which can trigger a
cascade.

We also consider the ‘opposite’ case where U is decreasing in d but increasing in
e. This captures positive link-externalities. Incident links are costly, but other’s
links are beneficial. This captures research collaborations with knowledge spillovers.
Collaborating on a project is costly and the cost rises with their number. However,
knowledge transfer from other projects via chains of collaborators complements ones
own productivity. For more details see the example before Proposition 6.

We characterize strongly stable networks under both negative and positive link ex-
ternalities. The characterization does not rely on a particular functional form for
U(d, e) which will make it useful for applications. In the presence of negative link-
externalities, strongly stable networks consist of disjoint cliques of a particular size
that depends on U(·, ·). Under positive link-externalities, we find that strongly
stable networks are either star networks or complete networks. The center of the
star network serves as a public good provider and receives a significantly lower payoff
than the other agents. In all cases, strongly stable networks are Pareto efficient, but
not necessarily efficient. We identify various instances where strong stability implies
efficiency.

These results hold even with heterogenous payoff functions (see Section 7 for de-
tails), i.e., the payoff to agent i is Ui(di, ei, fi) where fi is the number of nodes in
the component of node i ( which allows for node externalities), Ui is strictly de-
creasing/increasing in ei (the number of links in i’s component), weakly decreas-
ing/increasing in fi, and depends arbitrarily on di, node i’s degree. This last feature
allows one to encode link costs.

The next section provides an overview of the important differences with prior work.
More detailed discussions of differences and similarities appear in proximity to the
formal statements. The model and notation appear in Section 3. Section 4 discusses
the case of negative externalities while Section 5 focuses on positive externalities.
Section 6 discusses efficiency and examples while Section 7 describes some extensions
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of our model.

2 Related Literature

A general way to model payoffs is to use a function that depends on the entire
network. There are a large number of papers on network formation within such
a framework (see, for example, sections 8.2.1. and 8.2.2. in Vannetelbosch and
Mauleon (2016)). They provide characterizations under weaker notions of stability
with explicit functional forms for agent payoffs which focus on node-externalities.
We characterize stable and strongly stable networks under qualitative assumptions
on the payoff functions that emphasize link-externalities.

Goyal and Joshi (2006) and Buechel and Hellmann (2012) also consider link external-
ities with an important difference. In these papers, the utility of an agent depends
on the aggregate number of all links. Thus, an agent is subject to an externality
by agents to which it is not connected. In our case, only the links in the connected
component that contain the agent matters. In Morrill (2011) externalities are limited
to the number of links neighbors have with others. The precise difference in outcomes
is discussed in Section 4 and 5.

Our negative externality case is roughly related to models of contagion via nodes
rather than links. Network formation outcomes result in disjoint cliques as in our
model. Blume et al. (2013) show, in a model of independent contagion, that pairwise
Nash stable networks exist and consist of disjoint cliques. Erol (2019) shows that
disjoint cliques are the unique strongly stable outcome under threshold contagion
but his model features node-externalities rather than link-externalities.

Regarding our positive externality results, Galeotti et al. (2006), and Hojman and
Szeidl (2008) find star networks as Nash equilibria using the non-cooperative con-
nections model of Bala and Goyal (2000). The connections model does not map on
to notions of stability we examine. The closest to ours is the connections model
in Jackson and Wolinsky (1996) who find that star networks are pairwise stable for
some range of parameters that feature positive node-externalities that decay with
distance. To the best of our knowledge, there are no characterization results under
link-externalities even for weaker solution concepts than strongly stable.
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3 Model

Preliminaries A network G is a pair (N,E) where N = {1, 2, ..., n} is a finite set of
nodes and E ⊂ [N ]2 is a set of links.3 Throughout this paper we assume n ≥ 2. Call
two nodes i, j ∈ N neighbors in G if {i, j} ∈ E. A link {i, j} ∈ E is incident to i and
j in G. For i ∈ N , denote by Ni,G = {j ∈ NG| {i, j} ∈ E} the set of neighbors of i in
G and call di,G = |Ni,G| the degree of i in G. A path from i1 to ik in G is a sequence
of distinct nodes (i1, i2, ..., ik), all in N , such that {it, it+1} ∈ E for all t. Two nodes i
and j are connected in G if there is path in G between them. Network G′ = (NG′ , EG′)
is a subnetwork of network G if NG′ ⊂ N and EG′ ⊂ E ∩ [NG′ ]2 denoted G′ � G.
Note that G is a subnetwork of itself. A subnetwork G′ � G is connected if every
pair of nodes in NG′ is connected in G′ or if |NG′ | = 1. The component of a node i in
G is the largest connected subnetwork of G that includes node i with respect to the
order �. Denote by ei,G the number of links in the component of i in G. The payoff
to node i from network G is denoted ui,G = U (di,G, ei,G) where U : Z2 → R.

Pairwise Stability The conventional solution concept is pairwise stability due to
Jackson and Wolinsky (1996). A network is pairwise stable if no pair of nodes wants
to establish a new link and no individual node wants to sever a link. It is a weak
concept because nodes can only add or delete links and never at the same time.
While the existence of pairwise stable networks is easy to establish, it is a permissive
concept. For example, suppose U (di,G, ei,G) = di,G − cei,G where c ∈ (0.5, 1) for all i
(this example appears again in Proposition 3). Then, any partition of the nodes into
disjoint cliques of size at least 2 would be pairwise stable.4

Stability Consider a candidate network G = (N,E) and a subset of nodes D ⊂ N

called deviators. A feasible deviation from G by D allows nodes in D to simultane-
ously add any set of absent links within [D]2 and delete any set of links incident to

3[X]2 is the mathematical notation for the set of all 2-element subsets of a set X.
4Nodes can have negative payoffs in a pairwise stable solution which is problematic if nodes

have a non-negative reservation payoff. To see why, consider the clique on three nodes and assume
c ∈ ( 2

3 , 1). To verify pairwise stability, observe that no more links can be added. If any node deletes
a link, its payoff becomes 1−2c < 2−3c. But the payoff of each node is 2−3c < 0. Accommodating
reservation payoffs or allowing for cutting multiple links at once require modifying the notion of
pairwise stability.
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Candidate network G A feasible deviation by the grey
nodes.

Figure 1: A feasible deviation

any node in D. Formally, network G′ = (N,E ′) 6= G is a feasible deviation from G

by D ⊂ N if E ′ ∩ [N\D]2 = E ∩ [N\D]2 and E ′ ∩ ([N ]2\[D]2) ⊂ E ∩ ([N ]2\[D]2). A
feasible deviation is illustrated in Figure 1. A profitable deviation from G by D is a
feasible deviation from G by D that strictly improves the payoff of each member of D:
ui,G′ > ui,G for all i ∈ D. G is called k−stable if there is no profitable deviation from
G by any D ⊂ N with |D| ≤ k. We refer to 2-stable networks as stable networks,
and ∞−stable networks as strongly stable networks.5

Our notion of strong stability coincides with Dutta and Mutuswami (1997) whose
focus is to find value functions and sharing rules such that efficient and strongly stable
networks exist. This endeavor is categorically different from that of characterizing
strongly stable networks for given payoff functions.

The notion of strong stability is weaker than that in Jackson and Van den Nouweland
(2005) because they also require immunity against Pareto improving deviations. To
distinguish it from strong stability, call it Pareto Strongly Stable (PSS). Jackson
and Van den Nouweland (2005) show by example that existence of strongly stable
networks does not imply the existence of PSS networks. If transfers are possible
among deviators, PSS is perhaps the more suitable solution concept. In our setting,
there are no transfers.

Other definitions that will be used throughout follow next. We collect them in one
place for the convenience of the reader. For each integer k, let B(k) = 1

2k(k − 1).
A connected network is a network that is a connected subnetwork of itself. Call a
subnetwork G′ � G the subnetwork induced by NG′ if EG′ = E ∩ [NG′ ]2. Notice that

51-stable networks are Nash networks.
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A clique A star

Figure 2: A clique and a star

components are induced subnetworks. The order of a subnetwork is the number of
nodes in it. A clique is a subnetwork in which all nodes are neighbors of each other.
A disjoint clique is a clique which is also a component. A k−clique is a disjoint clique
of order k. A complete network is a network which is a clique. A star is a component
in which one node called the center, is neighbors with all other nodes, called leaves
wherein no two leaves are neighbors of each other. A star network is one where the
network itself is a star component. A clique and a star are illustrated in Figure 2. A
component is called non-trivial if there are at least two links in it, a link-component
if there is exactly one link in it, and a node-component if there are no links in it. A
cycle in G is a sequence of nodes (i1, i2, ..., ik) where {it, it+1} ∈ E for all t and it
holds that it = it′ iff {t, t′} = {1, k}. A node in a non-link component is called SC if
it lies on a cycle or is adjacent to a leaf. Call it WC otherwise. Call a node i central
(C) if di = n− 1 and non-central (NC) if di 6= n− 1.

4 Negative externalities

Suppose U is weakly increasing in d and strictly decreasing in e, namely negative
link-externalities.

Proposition 1. Under negative link-externalities, any stable network consists of dis-
joint cliques.

The proof relies on a simple observation. If there are two nodes i and j who are
not neighbors, but share a common neighbor k, then i and j can each cut their link
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with k and add the link {i, j}. This decreases the number of links in the component
containing i and j, leaving the degrees of i and j unchanged. Therefore, the payoffs
of i and j both strictly increase. One can increase the degrees of nodes in D ⊂ N by
either adding links inside D or by adding links between D and N\D. Conditional on
the desired increment to the degrees of nodes in D, the latter option entails twice the
amount of negative externalities than the former option. High clustering minimizes
the negative externalities imposed on a set of nodes conditional their degrees.

We contrast this result with Belleflamme and Bloch (2004), Goyal and Joshi (2006)
and Morrill (2011). The first two examine the consequences of negative externalities
that depend on the total number of links and not just the number of links in one’s
connected component.6

Clique size is not pinned down by stability, therefore there can be multiple stable
networks. See Section 6 for an example. As a selection, we use strong stability.
Denote the expected payoff of a node in a (d+ 1)-clique by V (d) = U (d,B(d+ 1)).
Let d∗ = arg maxd V (d). We assume that d∗ is well defined, which is generically true.

Theorem 1. Suppose that n is divisible by d∗+ 1. Under negative link-externalities,
strongly stable networks exist. A network is strongly stable iff it consists of (d∗ + 1)-
cliques.

For example, consider U(d, e) = d − ce where c > 0. Then, V (d) = d − c
2d(d + 1).

Take 1
c

+ 1
2 ∈ N for simplicity. Then, a strongly stable network consists of disjoint

(1
c

+ 1
2)-cliques. We explore this example in more detail in Section 6.

The proof uses a method we call the min-cut deviation. Suppose a profitable deviation
exists. Among all such deviations, choose one which minimizes the number of links
between the deviators and the non-deviators that remain after the deviation. The

6Buechel and Hellmann (2012) does the same, but allows for transfers which we do not.
In Belleflamme and Bloch (2004), payoffs have a specific functional form arising from Cournot

competition. Pairwise stable outcomes are also disjoint cliques of varying size. However, their result
relies on log convexity of firm profit functions. We impose no such requirement in payoffs (only
monotonicity) and we also characterize strongly stable outcomes are also disjoint cliques but of the
same size (see below).
In Goyal and Joshi (2006), payoffs are increasing in own degree and decreasing in the total number

of links. They show that any symmetric network is pairwise stable. In our case stable networks can
only be disjoint cliques.
In Morrill (2011) payoffs increase with own degree but decline in the degree of neighbors only.

Pairwise stable networks are not limited to cliques but can also be d-regular graphs for suitable d.7
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key is to show that a deviating node with smallest degree after this deviation, say d′,
cannot achieve a payoff exceeding V (d′), which is weakly less than V (d∗).

As Jackson and Van den Nouweland (2005) point out, strong stability is a demand-
ing solution concept. A situation wherein strongly stable networks exist is when all
nodes can jointly achieve the maximal payoff they could achieve across all networks,
as in Erol (2019). In our framework, nodes may not desire more links because they
are strictly harmed by their neighbors having more links. That is, each node would
strictly prefer to be at the center of a star network of appropriate order. But this is
impossible. Thus, the incentives of nodes are misaligned and they cannot simulta-
neously achieve maximal payoffs. This conflict between nodes in terms of who gets
a higher degree militates against the existence of strongly stable networks. Interest-
ingly, this same force implies the deviators face the same conflict among themselves.
The worst-off deviator gets exposed to high negative externalities by the better-off
deviators. Therefore, under negative link-externalities, notions of farsightedness are
not required to discipline the plausibility of deviations. It is remarkable that strongly
stable networks exist in our framework because negative externalities are proportional
to the number of edges whereas the benefits of links are proportional to degrees, and
the former grows exponentially compared to the latter.

5 Positive externalities

Next we study the case when U is weakly decreasing in d and strictly increasing in
e, namely positive link-externalities.

Proposition 2. Under positive link-externalities, a stable network consists of either
one non-trivial component and some node-components, or some link-components and
some node-components. Call the former non-trivial stable networks and the latter
trivial stable networks.

Roughly stated, the main idea is that under positive externalities separate non-trivial
components can be combined to boost link-externalities. This isn’t the case if the
cost of links are too high compared to the positive externalities so that nodes want
to belong to trivially small components. A characterization of trivial stable networks
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is contained in Proposition 7 in the Appendix. We now focus on non-trivial stable
networks.

In Goyal and Joshi (2006), when each agent’s payoff increases in the total number
of links, a stable network is either empty or consists of isolated nodes and a single
clique. In our case, the single connected component need not be a clique.

To obtain a sharper characterization of stable networks in the positive externality
case we impose more structure on U . If U(d, e) < U(d+ 1, e+ 1) for all d ≤ e, then,
all pairs would add all the missing links. The unique stable network is the complete
network, i.e., single clique. If U(d, e) < U(d − 1, e − 1) for all d ≤ e, the unique
stable network is the empty network. To see why, recall that a node in a non-link
components is called SC if it belongs to a cycle or is adjacent to a leaf . Every non-
link component has an SC node (see Lemma 1 in the Appendix). But, an SC node
i can cut a single link and increase its payoff to U (di − 1, ei − 1) with a unilateral
deviation. Link-components also benefit from cutting their links. Such cases of global
monotonicity yield uninteresting results. The problem is more interesting if there are
non-trivial tradeoffs between d and e. These can be incorporated by constraining the
‘cross-partials’ of U(d, e) with respect to d and e. Call U(d, e) strictly quasi-convex if
U(d, e) < max {U(d− 1, e− 1), U(d+ 1, e+ 1)} for all 1 ≤ d ≤ e. See Section 6 for
a setting where quasi-convexity would arise naturally.

To interpret quasi-convexity, suppose a node could add/delete an incident link with-
out changing the connectivity of its component. Then, d and e both change by 1.
Suppose also that in this case, the node’s payoff is monotone with the addition of
an incident link. Strict quasi-convexity asserts that adding an incident link is al-
ways beneficial in the case of negative externalities and always harmful in the case of
positive externalities. Thus incident links act as a counterweight to the externalities
imposed by distant links. Quasi-convexity differs from monotonicity of U in d in that
e is not assumed fixed while changing d.

Theorem 2. Under positive link-externalities and strict quasi-convexity, non-trivial
stable networks are either a complete network or a star network.

The complete network is stable iff U(n−1, B(n)) ≥ max{U(1, 1+B(n−1)), U(0, 0)}.
A stable complete network is strongly stable.8

8In fact, a stable complete network is strongly stable for any U with positive externalities even
if U is not quasi-convex.
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A star network is stable iff U(1, n − 1) ≥ U(2, n) and U(n − 1, n − 1) ≥ U(0, 0). A
stable star network is strongly stable iff U(1, n− 1) ≥ U(n− 1, B(n)).

That the complete network is stable is unsurprising given positive link externalities.
If the incremental benefit of increasing the number of links in a connected component
is sufficiently large, one will want to add as many links as possible. It is less obvious
that a star network will be stable. If the incremental cost of increasing one’s degree,
is large enough it will discourage nodes from adding links. However, in the absence
of links, nodes will not enjoy the benefits of being in a connected component. A
star network resolves this tension by making one node shoulder all the burden. We
illustrate with an example. Consider the additive form U(d, e) = e− cd where c < 1.
It is strictly quasi-convex and U(d + 1, e + 1) = U(e, d) + 1 − c > U(e, d). Thus,
the incremental benefit of adding a link is positive. In this case, the unique stable
network is the complete network which is also strongly stable.

Next, consider the multiplicative form U(d, e) = e
d+ε where 1 > ε > 0. It is strictly

quasi-convex and U(1, n − 1) ≥ U(n − 1, B(n)). The unique stable network is the
star network. It is also strongly stable.

Strongly stable star networks are interesting because the center of the star is providing
a public good by connecting all nodes to each other. The leaves enjoy higher payoffs
than the center. Recall that in the case of negative link-externalities, all nodes would
strictly prefer to be at the center of a star component, but this poses a conflict for
the agents. Under positive link-externalities, each node strictly prefer to be a leaf of
the star network, yet one node will occupy the center if the benefit from the number
of links in the relevant connected component exceed the costs associated with an
increase in degree. In this sense the center of the star is provider of a public good.

Star networks emerge as an equilibrium outcome in König et al. (2014) and Hiller
(2017b). However, payoffs in these papers depend on the sum of discounted ‘walk
lengths’ to other nodes and not the number of links in one’s connected component.9

9Hiller (2017a) is related but not comparable. Node payoffs in this paper are function of incident
links only and their ‘sign’.
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6 Examples, Stability, and Efficiency

In this section we give three examples to illustrate the difference between negative
and positive and negative externalities, the different notions of stability and their
connection to efficiency. The first two are chosen for their simplicity to make the
opposing effects of d and e on payoffs as transparent as possible. The third, can be
interpreted as model of collaboration with spillovers.

The first example illustrates the difference between stable and strongly stable net-
works in the case of negative externalities.

Proposition 3. Take U(d, e) = d − ce for some c > 0. Under the appropriate
parity assumptions, the following holds. A network is stable if and only if it consists
of disjoint cliques with orders k1 ≤ k2 ≤ ... ≤ ks where ks ≤ 2

c
+ 1 and k2 ≥

1
2(
√

8
c
− 7 − 1). A network is strongly stable if and only if it consists of disjoint

(1
c

+ 1
2)-cliques. A network is efficient if and only if it consists of disjoint (1

c
+ 1

2)-
cliques

All stable networks must consist of disjoint cliques according to Proposition 1. The
conditions to preclude profitable deviations by pairs reduces to ks ≤ 2

c
+ 1 and

k2 ≥ 1
2(
√

8
c
− 7 − 1). So, in general, cliques in a stable network can be twice as

large or exponentially smaller than the strongly stable cliques. This illustrates the
weakness of stability. Nodes can get “stuck” at small cliques. When only pairs are
allowed to add links in a feasible deviation, nodes from separate cliques can enjoy
the benefit of having one extra link, but they expose themselves to large negative
externalities due to existing links in the other node’s existing clique. In contrast,
strong stability allows for joint deviations. Two separate cliques can include all of
their missing links and form a new and larger clique. Each deviator is still exposed
to large negative externalities due to the pre-existing links in the other clique, but
the benefit is larger since many links are being added at once for each deviator.

Stable networks need not be efficient in the sense of maximizing total payoff. Consider
the instance described in Proposition 3. Observe that for a given k < 2

c
, it is efficient

to have all links in the component. Also observe that it is inefficient to have any
components with order larger than 2

c
. So the efficient network consists of disjoint

cliques. Then efficiency requires maximizing the average payoff which coincides with
strong stability.
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Efficiency and strong stability don’t coincide in general because strong stability im-
plies Pareto efficiency, not efficiency. This can be seen in a simple example. Suppose
that n = 4 and U satisfies

3U(3, 4) + U(1, 4) > U(1, 1) > max{U(0, 0), U(2, 3), U(3, 6)}.

This is consistent with negative link-externalities. The unique strongly stable network
is given by two links by Theorem 1. Yet, the network that consists of a triangle with
the extra node attached to it, i.e. E = {{1, 2}, {2, 3}, {3, 1}, {1, 4}}, gives higher
total payoff than the strongly stable network.

By restricting the curvature of U(d, e) one can ensure that strong stability will coin-
cide with efficiency. To illustrate, suppose U(d, e) is additive in d, as is the case in
Proposition 3. Then, strong stability and efficiency coincide.

Proposition 4. Consider negative link-externalities. Suppose that n is divisible by
d∗ + 1 and U(d, e) is additive in d. Further, assume U(2x, x) is increasing in x and
U(0, 0) > 0. Then, efficient networks and strongly stable networks coincide.

U(0, 0) > 0 can be seen as a normalization. If we drop the assumption that U(2x, x) is
increasing, then strongly stable networks are still “roughly” efficient. Each component
must still be close to a clique in the sense that a component with k nodes cannot
have less than B(k− 1) + 1 links in the efficient network. Then, the optimal number
of nodes in each component is close to d∗ if U is sufficiently “smooth.”

Now we consider a positive link-externalities example that is the ‘mirror image’ of
the one in Proposition 3.

Proposition 5. Take U(d, e) = e − cd where c > 0. For c > n
2 , the unique stable

network, the unique strongly stable network, and the unique efficient network is the
empty network. For n

2 > c > 1, the unique stable network is the empty network.
The unique efficient network is the complete network. There are no strongly stable
networks. For c < 1, the unique stable network, the unique strongly stable network,
and the unique efficient network is the complete network.

For c < 1 we have already determined that the unique non-trivial stable and strongly
stable network is the complete network. Clearly, this is also the efficient network. For
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Figure 3: A pineapple graph, P (11, 6)

1 < c, the unique stable network is the empty network. But this is neither strongly
stable nor efficient unless c > n−2

2 which is unlikely to be true for large networks.

Next, we consider a more interesting case of positive externalities. It generates a
strongly stable network that is a pineapple graph, P (n, k), found by appending n−k
nodes to one single node in a clique of order k. Figure 3 illustrates a pineapple graph.

To motivate the payoffs in this example, suppose each of n agents must decide how
many collaborations or joint projects it should participate in. The more projects
she is a part of, the more responsibilities she has. Thus, the marginal cost to agent
i of exerting effort xi will increase not just with xi but also with the number of
collaborations she is a part of. If di denotes the number of such collaborations, her cost
of effort is 0.5x2

i (di+ε). However, being a part of a network of collaborators allows her
to enjoy the benefits of spillovers (say from knowledge transfer) from projects she is
not a part of as long as she is connected to, via a chain of collaborators, to participants
in other projects. If e is the total number of projects in the connected component
of which she is a member, her benefit from effort xi is

√
exi. Thus, the spillovers

complement her own efforts, but holding xi fixed, they have diminishing returns.
Holding e and di fixed, agent i will choose xi to maximizes

√
exi− 0.5x2

i (di + ε). The
optimal effort choice will be xi =

√
e

di+ε . Agent i’s payoff will be 0.5e
di+ε .

Proposition 6. Take U(d, e) = e
d+ε for some arbitrarily small ε > 0. Then, the

star network is the unique strongly stable network, and the unique non-trivial stable
network. The unique efficient network is given by P (n, kn) where kn ≈ 2n

3 .

By Theorem 2, the unique non-trivial stable network is the star network, which is
also strongly stable. For efficiency, note that in a given component G′ � G with
nodes N ′, the sum of payoffs is 1

2(∑i∈N ′ di)(
∑
i∈N ′

1
di

). The term ∑
i∈N ′

1
di

is called the
inverse degree of the graph which is an object of interest in Chemical Graph Theory
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and we make use of an existing result from Hu et al. (2007) in the proof of efficiency.

7 Extensions

Here we summarize various ways in which our results can be extended. Theorems
and proofs are available upon request.

One can account for payoffs that feature node externalities and non-monotonicity in d.
Denote by fi the number of nodes in the component of i and suppose that the payoff
from a network is U(di, ei, fi). If U is strictly decreasing in ei and weakly decreasing
in fi with no restriction on how it depends on di, Proposition 1 and Theorem 1 (under
appropriate parity assumptions in the spirit of n

d∗+1 ∈ Z) still hold.

If U is strictly increasing in ei and weakly decreasing in fi with no restriction on
how it depends on di, Proposition 2 continues to hold. The characterization of sta-
bility in Theorem 2 fails, because there can be stable networks that consist of one
disjoint clique and some node-components. This happens because of the weakness
of 2−stability in that it does not allow larger coalitions of nodes to add links at the
same. The characterization of strongly stable networks is unaffected.

8 Conclusion

In the study of network externalities, links are often modeled to be only a transmit-
ter of externalities. In various scenarios, the links themselves create externalities and
not just transmit them. For example, collaborations with spillovers. Joint projects
can fail and lead to cascading defaults of real or financial firms. We study a simple
form of this type of externality and characterize stable and strongly stable networks.
Negative externalities, such as contagion via links, lead to highly clustered network,
in particular disjoint cliques. Positive externalities lead to either complete networks
or star networks depending on the costs and benefits of links. When a star network
is stable, the center of the star is a public good provider, transmitting positive ex-
ternalities across the network although it is costly for the center to maintain a large
number of links. Efficient networks tradeoff these two forces: a pineapple network
emerges wherein a central node is still public good provider being connected to all
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other nodes, but there is also a large clique that further increases the extent of positive
externalities which also benefits the center node.
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9 Proofs

Proof of Proposition 1

Suppose, for a contradiction, there exists a stable network with at least one com-
ponent containing two non-neighbors i and j. As i and j are connected, each has
at least one neighbor. Delete one link incident to i and another incident to j, and
insert the link {i, j}. The degrees of i and j are unchanged but the number of links
in their component strictly decreases. Hence, this is a profitable deviation by i and
j. Contradiction.

Proof of Theorem 1

Step 1. First we prove that if G is strongly stable it must consist of disjoint cliques
of the same size. Then, we show that a strongly stable network exists. Suppose G
is strongly stable. Then, it is stable and so by Proposition 1 it consists of disjoint
cliques. Now, the payoff to i ∈ N is V (di). If there exists a a disjoint clique with
order d+1 > d∗+1 in the realized network, d∗+1 members would deviate by forming
a disjoint (d∗ + 1)-clique and get V (d∗) > V (d). If there exists various cliques with
order less than d∗+1 but the sum of their orders is larger than equal to d∗+1, d∗+1
many nodes in these cliques would form a disjoint d∗ + 1 clique. Combining the two,
by the parity assumption that d∗ + 1 divides n, the unique candidate for a strongly
stable network is one that consists of disjoint (d∗ + 1)-cliques. It remains to show
that a graph consisting of disjoint (d∗ + 1)-cliques is strongly stable.

Step 2. For any profitable deviation G′ by N ′, define χ(G′) to be the number of links
between N ′ and N/N ′ in G′. Let the minimum of χ be attained at G∗. Denote by
N∗ the set of deviators in G∗, E∗ = EG∗ , N∗1 = {i ∈ N∗ : ∃j 6∈ N∗ s.t. {i, j} ∈ E∗},
and N∗0 = N∗/N∗1 . Take the/a node i∗ ∈ N∗ such that di∗,G∗ = min{di,G∗ |i ∈ N∗}.
Denote d∗ = di∗,G∗ . Denote a = |Ni∗,G∗ ∩ (N\N∗)| and b = |Ni∗,G∗ ∩ N∗0 |. Then
|Ni∗,G∗ ∩N∗1 | = d∗ − a− b.

Step 3. Suppose that there exists i ∈ N∗0 such that di = d∗. By definition of N∗0 ,
Ni,G∗ ⊂ N∗. By definition of i∗, all i ∈ N∗ have di,G∗ ≥ d∗. Therefore, ei,G∗ ≥ di +
1
2did∗ = B (d∗ + 1). Thus ui,G∗ = U (d∗, ei,G∗) ≤ U (d∗, B (d∗ + 1)) = V (d∗) ≤ V (d∗)
which is a contradiction. Therefore, di ≥ d∗+1 for all i ∈ N∗0 . In particular, i∗ ∈ N∗1 .
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Step 4. Consider any i, j ∈ N∗1 that are connected in G∗. If {i, j} 6∈ E∗, consider
the deviation G′ by N∗ such that EG′\E∗ = {i, j} and E∗\EG′ = {{i, i′}, {j, j′}}
for some i′, j′ 6∈ N∗. Notice that G′ is a profitable deviation since G∗ is whereas
χ (G′) < χ (G∗). This is a contradiction so {i, j} ∈ E∗. Therefore, all nodes in N∗1
that are connected in G∗ are neighbors of each other, and so make up a clique (not
disjoint clique). In particular, there are at least B (d∗ − a− b+ 1) links in within N∗1
in the component of i∗ in G∗.

Step 5. Take any i ∈ N0 that is connected to i∗ in G∗. By Step 3, di ≥ d∗ + 1.
By Step 4, Ni,G∗ ∩ N∗1 ⊂ {i∗} ∪ Ni∗,G∗ . Thus |Ni,G∗ ∩ N∗1 | ≤ d∗ − a − b + 1. Then
|Ni,G∗∩(N\N∗1 )| ≥ a+b. By definition ofN∗0 , Ni,G∗∩(N\N∗) = ∅ and so |Ni,G∗∩N∗0 | ≥
a+ b.

Accordingly, if b ≥ 1, thenN0 6= ∅, so there exists j ∈ N0 such that |Nj,G∗∩N∗0 | ≥ a+b.
Notice that all nodes in Nj,G∗ ∩N∗0 are connected to i∗ meaning that they all have at
least a+b neighbors inN∗0 . Therefore, there are at least 1

2(a+b+1)(a+b) = B(a+b+1)
links within in N∗0 that are in the component of i∗ in G∗.

Step 6. Take any i ∈ Ni∗,G∗ ∩ N∗1 . By definition of i∗, di,G∗ ≥ d∗. By Step 4,
Ni,G∗∩N∗1 ⊂ {i∗}∪Ni∗,G∗\{i}. Thus, |Ni,G∗∩N∗1 | ≤ d∗−a−b. Then |Ni,G∗∩(N\N∗1 )| ≥
a + b. This holds for all i ∈ Ni∗,G∗ ∩ N∗1 and |Ni∗,G∗ ∩ N∗1 | = d∗ − a − b. Thus the
number of links between N∗1 and N\N∗1 in the component of i∗ in G∗ is at least
(d∗ − a− b+ 1)(a+ b).

Step 7. By feasibility of the deviation G∗, links between N∗ and N/N∗ in G∗ exist
in G as well. Then Ni∗,G∗ ∩ (N\N∗) ⊂ Ni∗,G ∩ (N\N∗). Since G consists of disjoint
cliques, all nodes in Ni∗,G∩ (N\N∗) are neighbors of each other in G. Then all nodes
in Ni∗,G∗ ∩ (N\N∗) are neighbors of each other in G. Since G∗ is a deviation by
N∗, by the feasibility of the deviation, all nodes in Ni∗,G∗ ∩ (N\N∗) are neighbors of
each other in G∗. Therefore, there are at least B(a) many links within N/N∗ in the
component of i∗ in G∗.

Combining all steps we find ei∗,G∗ ≥ B (d∗ − a− b+ 1)+1b≥1B(a+b+1)+(d∗−a−b+
1)(a+b)+B(a) ≥ B(d∗+1). Accordingly, ui,G∗ ≤ U (d∗, B (d∗ + 1)) = V (d∗) ≤ V (d∗)
which is a contradiction. There are no profitable deviations from G.
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Proof of Proposition 2

Recall that a node in a non-link component is called SC if it lies on a cycle or is
adjacent to a leaf.

Lemma 1. In any network, every non-link component has at least one SC node. A
non-link component has exactly one SC node iff it is a star component.

Proof. Any non-link component, the neighbor of a leaf is obviously SC. If the non-
link components has no leaves, then, every node must be on a cycle, thus every node
is SC.

It is clear that a star network has only one SC node. Consider any non-link compo-
nents that has exactly one SC node. If it contains a cycle, then, all nodes in the cycle
are SC, which implies at least three nodes. So, the component must be a tree. As all
parents of all leaves are SC nodes, there can be only one such parent. The only tree
in which there is one common parent for all leaves is the star network.

Step 1. Suppose that there exist two non-link components. By Lemma 1, each of
them has at least one SC node. Pick one SC node from each, say i and j. Let i and
j cut one link each with their component, and add the link {i, j}. This leaves their
degrees unchanged. ei becomes ei − 1 + 1 + (ej − 1) ≥ ei + 1. Same for j. Thus,
this is a profitable deviation for i and j. This means there cannot be two non-link
components.

Step 2. Denote e∗ = max {e ∈ Z : U(1, 1) ≥ U(2, e)}. Take a non-link component
with e links. Suppose that e′ < e∗. Take one SC node from the component, say
i. Note that SC nodes have degree at least 2. Cut all links of i but one. After
this unilateral deviation, i’s payoff is at least U(1, 1) whereas U (1, 1) ≥ U (2, e∗) >
U(2, e′) ≥ U(di, e′). As this is a profitable deviation, we must have e′ ≥ e∗.

Step 3. Suppose that there exists a link-component and a non-link component. Then,
consider the following deviation. Take one SC from the non-link component, say i,
and one node from the link-component, say j. Cut one link of i and form a link
between i and j. Node i’s payoff becomes U(di, e′+1) > U(di, e′) ≥ U(di, e∗) by Step
2. Node j’s payoff becomes U(2, e′ + 1) > U(1, 1) by Step 2 and the definition of e∗.
So this is a profitable deviation. Thus a non-link component and a link-component
cannot coexist. Steps 1 and 3 together, complete the proof.
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Characterization of trivial stable networks

Proposition 7. Under negative link-externalities, trivial stable networks are char-
acterized as follows. A network of multiple link-components and multiple node-
components is stable if and only if U(1, 1) = U(0, 0) ≥ U(2, 3). A network of
multiple link-components and at most one node-component is stable if and only if
U(1, 1) ≥ max {U(0, 0), U(2, 3)}. A network of one link-component and multiple
node-components is stable if and only if U(1, 1) = U(0, 0) ≥ U(2, 2). A network of
multiple node-components is stable if and only if U(0, 0) ≥ U(1, 1). (Straightforward.)

Proof of Theorem 2

Lemma 2. Under positive-link externalities, a connected network is stable iff it is a
1-stable network, and no pair of nodes can strictly improve their payoff by adding a
link without cutting any links.

Proof. “Only if” part is true by definition. For the “if” part, take a 1-stable network
and suppose that a pair i and j has a profitable deviation to G′. Denote by Si the
set of links, except the link {i, j}, that i cuts in the deviation from G to G′. Define
Sj analogously.

Suppose that the deviation to G′ does not involve adding the link {i, j}, i.e. either
{i, j} 6∈ EG, EG′ or {i, j} ∈ EG. Then G′′ where EG′′ = EG′ ∪ Sj is a unilateral
feasible deviation by i from G. Notice that di,G′ = di,G′′ and ei,G′ ≥ ei,G′′ . Thus
ui,G′′ ≥ ui,G′ > ui,G. This is a contradiction because G is 1−stable.

Next, suppose that the deviation to G′ involves adding the link {i, j}, i.e. {i, j} ∈
EG′\EG. Since no pair of nodes can strictly improve their payoff by adding a link
without cutting any links in G, we cannot have Si = Sj = ∅. Then w.l.o.g. take
Si 6= ∅. If |Si| = 1 then ui,G = ui,G′ which contradicts G′ being a profitable deviation.
So |Si| ≥ 2.

Since the network G is connected and {i, j} 6∈ G, there is a path from i to j in
G that does not have the link {i, j}. Then, there exists a path from some k ∈
{i} ∪ {i′ : {i, i′} ∈ Si} to j in G that does not use any of the links in Si.

If k 6= i, consider the unilateral deviation by i from G to G′1 in which i cuts links
Si\{i, k}. (Note that this is indeed a deviation because |Si\{i, k}| ≥ 1 is implied
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by |Si| ≥ 2.) Clearly di,G′ = di,G′1 . Since there is path from k to j in G that does
not include any links in Si\{i, k}, k is connected to j in G′1. Since {i, k} ∈ EG′1 ,
i is connected to j in G′1. Thus ei,G′1 ≥ ei,G′ . Therefore, ui,G′1 ≥ ui,G′ > ui,G.
Contradiction with 1−stability.

If k = i, consider the unilateral deviation by i from G to G′2 in which i cuts all links
in Si but one. Clearly di,G′ = di,G′2 . Since there is a path from k = i to j that does
not involve any links in Si, i is connected to j in G′2. Hence ei,G′2 ≥ ei,G′ . Thus
ui,G′2 ≥ ui,G′ > ui,G which contradicts 1−stability.

Lemma 3. Under positive link-externalities and strict quasi-convexity, a star net-
work with n′ nodes is stable iff U(n′ − 1, n′ − 1) ≥ U(0, 0) and U(1, n′ − 1) ≥
max {U(2, n′), U(0, 0)} and a complete network with n′ nodes is stable iff U(n′ −
1, B(n′)) ≥ max{U(1, 1 +B(n′ − 1)), U(0, 0)}.

Proof. Call the unique non-leaf node in the star the center. According to Lemma 2,
the relevant deviations are type 1– the center cuts some links, type 2– a leaf cuts
its link with the center, and type 3– two leaves add a link between them. By quasi-
convexity, the center does not have a profitable type 1 deviation iff U(n′−1, n′−1) ≥
U(0, 0). There is no type 2 profitable deviation iff U(1, n′ − 1) ≥ U(0, 0). There is
no profitable type 3 deviation iff U(1, n′ − 1) ≥ U(2, n′).

Suppose that G′ is complete. According to Lemma 2, the only relevant deviations
are those in which a node cuts some links. By quasi-convexity, such a deviation is
not profitable iff U(n′ − 1, B(n′)) ≥ max{U(1, 1 +B(n′ − 1)), U(0, 0)}

Lemma 4. In any network, if there exists a non-central node, there exists at least
two non-central nodes. (Straightforward.)

Lemma 5. In any network, if there is a central node, all WC nodes must have degree
1. (Straightforward.)

Lemma 6. Under positive link-externalities and strict quasi-convexity, a connected
stable network is either a star network or a complete network.

Proof. Consider a stable network with n′ nodes and e links.

Step 1. An SC node i can cut one link and get U (di − 1, e− 1) because the component
it belongs to has exactly one less link. So all SC nodes i must have U (di, ei) ≥
U (di − 1, e− 1).
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Two NC nodes can add a link. Then for at least one of them, the deviation must
be non-profitable. This holds for every NC pair. Thus, for all but at most one NC
nodes i we must have U (di, e) ≥ U (di + 1, e+ 1).

Notice, by strict quasi-convexity of U , we have

U (d− 1, e− 1) + U (d+ 1, e+ 1) > 2U(d, e).

Then, all but at most one of the NC nodes must be WC. Otherwise, they want to
cut a link unilaterally.

Step 2. Suppose that there exists a C node and an NC node. Then, there exists at
least two NC nodes by Lemma 4. Since all but one NC nodes are WC (by Step 1),
there exists a WC node. We know that there is a C node and a WC node. Recall
Lemma 5: whenever there is a C node, all WC nodes must have degree 1. If there
were at least two C nodes, then, no node can have degree 1. Therefore, there is
exactly one C node and all nodes but one are NC, which means all but at most two
are WC by Step 1. Thus, all but at most two nodes have degree 1. In sum, there is
one node with degree n′ − 1, and n′ − 2 nodes with degree 1. This implies that the
remaining node also has degree 1. Therefore, the network is a star if there exists a C
node and an NC node.

Step 3. If there is no NC node, by definition, the network is complete.

Suppose that there is no C node and so all nodes are NC. Then, by Step 1, all but
at most one node are WC. Hence, there is at most one SC node. By Lemma 1, the
network is a star network since there is a unique SC node. But then, it is a C node,
since the network is a star which is a contradiction.

Combining Steps 3 and 4, we find that the network is either a star or a complete
network.

Lemma 7. If a network is stable, then all of its subnetworks are stable. (Straight-
forward.)

Stability part. Now we are ready to complete the proof of the stability part. Take a
non-trivial stable network G and denote by G′ the non-trivial component in G. G′

is a connected network by definition. By Lemma 7, G′ is stable. By Lemma 6, G′ is
either a star or complete. Denote by n′ the order of G′. Suppose that n′ < n. This
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means there are some node-components in G along with the non-trivial component
G′.

If G′ is a star, by Lemma 3, we have U(n′ − 1, n′ − 1) ≥ U(0, 0) and U(1, n′ − 1) ≥
max {U(2, n′), U(0, 0)}. Strict quasi-convexity implies U(n′, n′) > U(n′− 1, n′− 1) ≥
U(0, 0). So the center of the star strictly improves its utility by forming a link with
a node-component. By positive link-externalities, U(1, n′) > U(1, n′ − 1) ≥ U(0, 0),
hence a node-component strictly improves its utility by forming a link with the center
of the star. This contradicts the stability of G. Thus, n′ = n and so G is a star. By
3, it is stable iff U(n− 1, n− 1) ≥ U(0, 0) and U(1, n− 1) ≥ max {U(2, n), U(0, 0)}

If G′ is complete, by Lemma 3, we have U(n′ − 1, B(n′)) ≥ max{U(1, 1 + B(n′ −
1)), U(0, 0)}. By strict quasi-convexity, we have U(n′, B(n′)+1) > U(n′−1, B(n′)) ≥
U(1, 1 +B(n′ − 1)). So, any node in the the non-trivial component strictly improves
its utility by forming a link with a node in a node-component. By positive link-
externalities, U(1, B(n′) + 1) ≥ U(n′, (B(n′) + 1) > U(n′ − 1, B(n′)) ≥ U(0, 0).
Therefore, any node in a node-component strictly improves its utility by forming
a link with a node in the non-trivial component. This contradicts the stability of
G. Thus n′ = n and so G is a complete network. By Lemma 3, it is stable iff
U(n− 1, (B(n)) ≥ max{U(1, 1 +B(n− 1)), U(0, 0)}. This completes the proof of the
stability part.

Strong stability part. Consider a stable star network G. Denote the center node by
i0.

Step 1. First, consider feasible deviations that involve i0. Denote one such feasible
deviation by G1. If G1 is a unilateral deviation by i0, it cannot be profitable, by
stability, so G1 involves some leaves, say D ⊂ N\{i0}. Consider the feasible deviation
G2 by D such that EG2 ∩ [D ∪ {i0}]2 = EG1 ∩ [D ∪ {i0}]2 and EG\[D ∪ {i0}]2 ⊂ EG2 .
This is a feasible deviation by D because 1) nodes in D are neighbors with i0 in
G, and so G1 can not involve adding a non-existing link between i0 and D, and 2)
if some links between i0 and D were cut in G1, these links can still be cut by D.
Clearly di,G1 = di,G2 and ei,G2 ≥ ei,G1 for all i ∈ D. Therefore, if G1 is a profitable
deviation, then G2 is also a profitable deviation. That is, if there is a profitable
deviation that involves the center, then there is a profitable deviation that doesn’t
involve the center. So, there exists a profitable deviation iff there exists a profitable
deviation by a subset of the leaves. Call the latter leaf-deviations.
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Step 2. A deviation by some leaves that involves at least one leaf cutting the link
with i0 and not adding any links can’t be profitable, by stability. So, in any profitable
deviation by some leaves, all deviators who cut their link with i0 must have added
some links to other deviators.

Consider the/a leaf-deviation in which the minimum number of links between the
deviators and the center are cut, if leaf-deviations exists. Denote this deviation by
G1. If there exists a deviator, say i1, that cut its link with i0, it must have added at
least one link with another deviator, say i2, by Step 1. Then, consider the feasible
deviation G2 by NG1 given by EG2\EG1 = {i0, i1} and EG1\EG2 = {i1, i2}. It is clear
that G2 is a profitable deviation since G1 is. But G2 involves cutting fewer links with
i0. This contradicts the definition of G1. Thus, there are no deviators in G1 that cut
the link with i0.

In sum, there exists a leaf-deviation iff there exists a leaf-deviation in which no
deviators cut their link with i0. Call the latter connected-leaf-deviations.

Step 3. Consider the/a connected-leaf-deviation in which the deviators have the
largest number of edges in their component (which is the whole network) after the
deviation, if any connected-leaf-deviation exists. Call this deviation G1. Denote by e
the number of links in G1. Take one deviator, say i, that has the largest degree among
all deviators after the deviation. It holds that U(1, n − 1) < U(di,G1 , e) since this is
a profitable deviation. If there exists two deviators j, j′ such that dj,G1 , dj′,G1 < di,
then consider the deviation G2 by NG1 given by EG2 = EG1 ∪ {j, j′}. The number
of links in the component of deviators is now e + 1. So for j′′ ∈ N1\{j, j′}, uj′′,G2 >

uj′′,G1 > uj′′,G. As for j and j′, uj/j′,G2 = U(dj/j′,G2 , e + 1) = U(dj/j′,G1 + 1, e + 1) ≥
U(di,G1 , e + 1) > U(di,G1 , e) > ui,G = uj/j′,G. Thus, G2 is a connected-leaf-deviation,
but G2 has more links than G1, which is a contradiction. Therefore, the degree of at
most one deviator is altered after the deviation G1.

Let all but one of the deviators in G1 have degree d, and one other, say j′′0 has degree
d′ ≤ d. Suppose that d′ ≤ d − 2. We first claim that two deviators j′′1 , j′′2 6∈ Nj′′,G1

can’t be neighbors of each other in G1. Otherwise, the deviation G2 by NG1 given by
EG2\EG1 = {{j′′, j′′1}, {j′′, j′′2}} and EG1\EG2 = {{j′′1 , j′′2}} would be a connected-leaf-
deviation that involves more links than G1. Therefore, deviators in NG1\Nj′′0 ,G1 are
not neighbors of each other. But then, they can’t have larger degree than j′′, which
is a contradiction. So, we must have d′ ≥ d− 1. (Note that d′ = d− 1 iff (d− 1)|NG1|
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is odd.) Then, notice that eG1 = n− 1 + b(0.5)(d− 1)|NG1|c.

Given these, suppose that NG1 6= N . The payoffs of all but one of the deviators are
U(d, eG1) > U(1, n− 1). Take some i′ 6∈ NG1 . Consider a deviation G3 by NG1 ∪ {i′}
wherein one deviator has degree d− 1 or d, and all other deviators have degree d.10

Then, the deviators have payoff at least U(d, n − 1 + b(0.5)(d− 1)(|NG1|+ 1)c) ≥
U(d, eG1) > U(1, n − 1). Thus G3 is a connected-leaf-deviation which involves more
links than G1. This is a contradiction so we must have NG1 = N .

So, there exists a connected-leaf-deviation iff there exists a d and connected-leaf-
deviation by all leaves in which all but one of the deviators have degree d and the
other has degree d or d − 1 (depending on the parity of (d − 1)(n − 1)) after the
deviation. Call the latter a d−regular-connected-leaf-deviation.

Step 4. After a d−regular-connected-leaf-deviation, the payoff of deviators is U(d, n−
1 + b(0.5)(d− 1)(n− 1)c). The potential residual deviator has higher payoff so his
incentive constraint does not bind. Therefore, combining all steps, we find that G
is strongly stable iff U(1, n − 1) ≥ U(d, n − 1 + b(0.5)(d− 1)(n− 1)c) for all d. By
strict quasi-convexity, this holds iff U(1, n− 1) ≥ U(n− 1, B(n)).

Next, consider a stable complete network. By 1−stability, U(d,B(n)− (n−1−d)) ≤
U(n − 1, B(n)) for all d. In any feasible deviation by any subset of nodes after
which a deviators degree becomes d, the number of links in the component is at most
B(n)− (n− 1− d). So there are no profitable deviations.

Proof of Proposition 3

The part about stability follows after checking relevant deviations and some algebra.
For efficiency, consider any network. Index components by t. Let et and kt be the
number of links and nodes in component t. The sum of payoffs is ∑t et(2 − ckt).
Thus, it is inefficient to have a component with kt > 2

c
. For kt < 2

c
, it is efficient to

have all links possible in the component. Thus the efficient network must consist of
disjoint cliques. Then, the objective is to maximize the average payoff in a network
that consists of disjoint cliques, which coincides, by definition, with strongly stable
networks.

10For any k and 1 ≤ d′′ ≤ k − 1, if kd′′ is even, there exists a d′′regular network on k nodes. If
kd′′ is odd, there exists a network where one node has degree d′′ − 1 and all the others have degree
d′′. This is a consequence of the Erdos-Gallai Theorem.
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Proof of Proposition 4

Take a network and index its components by t. Denote by et and kt the number of
links and nodes in the tth component. By additivity, the sum of payoffs in component
t is U(2et, et) which depends only on the number of links. Thus, et = B(kt) is efficient.
Therefore, efficiency requires maximizing ∑t ktU(kt − 1, B(kt)) subject to ∑ kt = n.
Then the solution is kt = d∗ + 1 for all t as d∗ = arg maxU(d,B(d+ 1)).

If U(2x, x) is not an increasing function of x, it is still efficient to make components
“dense” in the sense that if et < B(kt), then less than kt nodes can be used to form
a component with et links. The residual nodes can be used elsewhere or alone to
increase total payoff as U(0, 0) > 0. Thus, et must be between B(kt − 1) and B(kt).
That is, the components must be “close” to a clique with perhaps at most kt − 2
missing links. Therefore, efficiency roughly requires maximizing ∑t ktU(kt−1, B(kt))

Proof of Proposition 5

For c < 1, every pair would add their missing link. So the unique stable network is
the complete network. By Theorem 2, this is strongly stable. For c > 1, every pair
would cut their existing link. So the unique stable network is the empty network.
For c < n

2 , this is not strongly stable because all agents would jointly deviate to the
complete network. So there are no strongly stable networks. For c > n

2 , consider a
deviation from the empty network and take a component with k nodes and e links.
The sum of payoffs is ke − 2ce < 0 meaning that at least one deviator has negative
payoff. So this can not be a profitable deviation. So, the empty network is strongly
stable. Finally, consider efficiency. The sum of payoffs in a component is e(k − 2c).
If n < 2c, this cannot be made positive, so the unique stable network is the empty
network. If n > 2c, there can be components with more than 2c nodes in the efficient
network. But combining them into the complete network clearly increases the total
payoff.

Proof of Proposition 6

First, we show that an efficient network must be connected. If not, take two compo-
nents. If either are node-components, take two neighbors i1, i2 from one component
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and two neighbors j1, j2 from the other. Cut links {i1, i2} and {j1, j2}, add links
{i1, j1} and {i2, j2}. Then, the degrees of all nodes are unchanged. The sum of pay-
offs clearly increase as the components are combined. If one is a node-component
and the other G′ is not, take i from the node-component and j from the other, and
add the link {i, j}. The change in the sum of payoffs is

1
2(
∑
j′∈N ′

dj′ + 2)(
∑
j′∈N ′

1
dj′

+ 1− 1
dj′(dj′ + 1))− 1

2(
∑
j′∈N ′

dj′)(
∑
j′∈N ′

1
dj′

) > 0.

So, the network must be connected. Now we are interested in finding a degree se-
quence {di}ni=1 for a connected graph to maximize (∑n

i=1 di)
∑n
i=1

1
di
. For the moment,

fix the number of links in the graph to be m and consider the following problem:

maxm
n∑
i=1

1
di

subject to ∑
i

di = m

d1 ≥ d2 ≥ . . . ≥ dn
r∑
i=1

di ≤ r(r − 1) +
n∑

i=r+1
min(di, r) ∀r

n− 1 ≥ di ≥ 1 ∀i

This is the problem of finding among all m-edge graphs with n nodes, the one with
the smallest ∑n

i=1
1
di
. Theorem 3.5 in Hu et al. (2007) tells us that we can describe

the optimal graph for the problem just stated using two parameters k and a ∈ [0, k].
The optimal graph consists of a single clique of size k, one of the vertices in the clique
will have degree n − 1; call it vertex 1. There will be n − k − 1 degree one vertices
adjacent to vertex 1 and a single vertex with degree a whose neighbors are in the
clique and include vertex 1. We can describe the degree sequence of the graph in the
following way.

1. d1 = n− 1

2. dj = k for 2 ≤ j ≤ a

3. dj = k − 1 for a+ 1 ≤ j ≤ k
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4. dk+1 = a

5. dj = 1 for k + 2 ≤ j ≤ n

This means that m = k(k − 1)/2 + a + n − k + 1. Observe that if a = 0, 1, k, this
graph is a pineapple.

Now lets make m a variable. The goal will be to show that for an optimal choice of
m we choose a ∈ {0, 1, k}. Our objective function is

f(a) = [k(k − 1) + 2a+ 2(n− k) + 2][ 1
n− 1 + a− 1

k
+ k − a
k − 1 + 1

a
+ n− k − 1]

Let A = k(k−1)+2(n−k)+2 and B = 1
n−1−

1
k

+ k
k−1 +n−k−1 = 1

n
+ 1

k(k−1) +n−k.
Then, our objective function becomes:

(A+ 2a)(B − a

k(k − 1) + 1
a

).

Now
B − a

k(k − 1) + 1
a
≥ B − 1

k − 1 + 1
k

= 1
n− 1 −

1
k

+ k

k − 1 + n− k − 1− 1
k − 1 + 1

k
= 1
n− 1 + n− k

Hence f(a) ≥ (A + 2a)( 1
n−1 + n − k) which is increasing in a. We show that f is

convex.
f ′(a) = 2(B − a

k(k − 1) + 1
a

)− (A+ 2a)( 1
k(k − 1) + 1

a2 )

f ′′(a) = − 2
k(k − 1) −

1
a2 −

2
k(k − 1) + 2A

a3 + 2
a2

= − 4
k(k − 1) + 2A

a3 + 1
a2

For a ≤ k − 1 we have that

f ′′(a) ≥ − 4
k(k − 1) + 2A

k(k − 1)2 + 1
k(k − 1)

= − 3
k(k − 1) + 2k(k − 1) + 2(n− k) + 2

k(k − 1)2
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= − 3
k(k − 1) + 2

k − 1 + 4(n− k) + 1
k(k − 1)2 ≥ 0

As f is convex and lies above a linear function that is increasing, it follows that f(a)
cannot have a maximum at some value of a strictly between 1 and k.

Therefore, the efficient network must be a pineapple graph, say with m nodes in the
clique. The remaining n − m nodes are neighbors only with the center node. The
value of this network is ((

m

2

)
+ n−m

)(
n

n− 1 + n−m
)
.

An analytical solution exists as this is a cubic in m but the expression is extremely
long and hard to interpret. For large n let m = nα where α ∈ [0, 1]. In the limit
with respect to n, ((

m

2

)
+ n−m

)(
n

n− 1 + n−m
)

≈
(
n2

2 α
2 + n(1− α)

)(
n

n− 1 + n− nα
)

=n3
(1

2α
2 + 1− α

n

)( 1
n− 1 + 1− α

)
≈n3

(1
2α

2
)

(1− α)

which is maximized for α = 2
3 .
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