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Abstract

The analysis of threshold contagion processes in large networks is challenging.
While the lack of accurate network data is often a major obstacle, finding optimal
interventions is computationally intractable even in well-measured large networks. To
obviate these issues we consider threshold contagion over networks sampled from a
graphon—a flexible stochastic network formation model—and show that in this case
the contagion outcome can be predicted by only exploiting information about the
graphon. To this end, we exploit a second interpretation of graphons as graph limits
to formally define a threshold contagion process on a graphon for infinite populations.
We then show that contagion in large but finite sampled networks is well approxi-
mated by graphon contagion. This convergence result suggests that one can design
interventions for large sampled networks by first solving the equivalent problem for
an infinite population interacting according to the limiting graphon. We show that,
under suitable regularity assumptions, the latter is a tractable problem and we provide
analytical characterizations for the extent of contagion and for optimal seeding policies
in graphons with both finite and infinite agent types.
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1 Introduction

Many phenomena, such as technology adoption, bank failures, and drug use start
with a few initial “seeds” and spread quickly through social and economic networks.
Understanding how the extent of the spread depends on the initial seeds and the struc-
ture of the network is, therefore, a key policy concern. Some simple contagion processes
in which agents require a single exposure to be infected (e.g., the the classic SIR model
or the independent cascade model due to Kempe et al. (2003)) do not appear to be
particularly sensitive to the location of initial seeds (Akbarpour et al., 2020). On the
other hand, complex contagion processes in which agents might require several expo-
sures to get infected, such as the linear threshold model due to Granovetter (1978),
are very sensitive to initial seeds and can be difficult to analyze, particularly in large
networks. In this paper, we propose a novel and tractable way to analyze the linear
threshold model over networks sampled from a graphon—a general nonparametric net-
work formation model which includes the random graph model due to Erdés and Rényi
(1959) and stochastic block models in which agents belong to one of several commu-
nities. Our motivation for considering sampled networks is that in many applications
detailed data about the network is not available (Breza et al., 2020), but an observer
might nevertheless have a theory about the data-generating process (i.e., the stochastic
network formation model). We, therefore, analyze whether the contagion outcome in
sampled networks can be predicted by exploiting only statistical network information
(captured by the graphon) in the large population regime.

Formally, a graphon is a measurable function W : [0,1]? — [0, 1]. In this paper, we
use graphons to represent a stochastic network formation model, however, graphons
also have an interpretation as a limit of a sequence of graphs with increasing number
of nodes (Borgs et al., 2008; Lovész, 2012). According to this latter interpretation,
the [0, 1] interval represents a continuum of heterogeneous agents, each associated with
a label u € [0,1], so that W (u,v) denotes the level of interaction between labels u
and v. Building on this interpretation, our first contribution is to formally define a
linear threshold contagion model for a continuum of agents interacting according to
a graphon. As in the standard linear threshold model in finite networks, labels in
[0,1] can be in one of two states: infected and not infected. At time t = 0 a subset
Cp C [0, 1] of the labels are exogenously infected as seeds (e.g., initial adopters or initial
bank failures).! In subsequent time steps, labels are infected if they were infected before

or if the fraction of their neighbors who are infected exceeds a label-specific threshold

'We use C to mean weak and C to mean strict inclusion.



7(u). Formally, a label u € [0, 1] is ezposed to infection at time ¢t = 1,2,3... if

fct—l W (u,v)dv
J W (u,v)dv

> 7(u),

where Cy_1 C [0,1] is the set of infected labels at time ¢ — 1; a label is infected at time
t if it was either infected at time ¢ — 1 or exposed at time t.

As the first main result, we show that the outcome of contagion in large networks
sampled from a graphon is well-approximated by the outcome of the graphon contagion
process just defined (Theorems la and 1b). More precisely, our results show that
contagion in a graphon can accurately approximate the entire dynamics (and therefore
the speed) of contagion rather than simply the final set of infected agents.

Besides being of independent interest, this convergence result is particularly pow-
erful when we turn to the design of optimal seeding sets. In fact, solving the optimal
seeding problem based on exact network data is a computationally hard problem for
large populations (Kempe et al., 2003). As a second main result, we propose a novel
approach to optimal seeding based on the graphon limiting process. Specifically, we
introduce two classes of optimal seeding problems for graphon contagion processes: the
mazx-reach problem in which the planner wants to select seeds to maximize the spread
of contagion given a constraint on the measure of the seed set and the min-seed prob-
lem in which the central planner wants to select the smallest seed set that achieves a
target level of contagion. We derive structural properties of the solution to the graphon
seeding problems (Theorem 2) and we show how a planner can exploit such graphon
solutions to design seeding policies for sampled networks.

Our approximation and optimal seeding results are particularly useful if one can
easily compute the outcome of graphon contagion and the solution to the graphon
seeding problems mentioned above. As a third contribution, we show that this is the
case if the graphon has a suitable regularity structure. Specifically, we focus on two
classes of commonly used graphons. First, we consider stochastic block models in
which agents belong to a finite number k of communities (“types”). We show that
contagion in a graphon in this class is equivalent to contagion in an auxiliary finite
network with 2k nodes. As a result, the max-reach problem in a stochastic block
model reduces to an optimization problem with only k variables. This reduction offers
a clear computational advantage since in general the number of communities k& is much
smaller than the number of agents. Second, we consider contagion in various structured
graphons with an infinite number of agent types. We give clean characterizations of
the dynamics of contagion and find analytical solutions to the max-reach and min-seed
problems in these structured graphons. Taken as a whole, our illustrations emphasize

the tractability offered by the analysis of contagion in graphons.



There is a vast literature on the linear threshold model and on complex contagion
more generally. Previous work has analyzed complex contagion in deterministic net-
works (see, e.g., Morris (2000); Kempe et al. (2003); Adam et al. (2012); Lim et al.
(2016)), in partial information settings (see, e.g., Stein et al. (2017); Wilder et al.
(2018); Chin et al. (2022); Eckles et al. (2022)) as well as in stochastic network mod-
els (see, e.g., Watts (2002); Amini (2010); Lelarge (2012); Moharrami et al. (2016)).
Three papers in the latter strand are the closest to our contribution: Jackson and
Storms (2019), Rossi et al. (2017), and Sadler (2020). Closest to our work, Jackson
and Storms (2019) study equilibria of binary coordination games (that are closely re-
lated to threshold contagion) in stochastic block models (a subcase of graphons). They
show that such equilibria generate an “atomic” partition of the network that goes
beyond standard community structure. Our results are complementary to this paper
since (i) the graphon model allows us to explicitly analyze the dynamics of the conta-
gion process; (ii) our solution to the max-reach problem is optimal in the graphon and
(iii) while the exact atomic partition can be challenging to compute in large networks,
the computational tractability of our graphon-based seeding policy is independent of
the sampled network size. The other two papers closest to ours study contagion dy-
namics in the context of a configuration model, in non-strategic (Rossi et al., 2017)
and strategic (Sadler, 2020) settings. Our model is different because instead of the
configuration model, we use the graphon model as our stochastic network formation
process. This choice has several consequences: (i) while the configuration model gen-
erates graphs that are sparse and locally tree-like, graphons encode a large class of
(dense) network formation models, such as stochastic block models which can capture
the assortativity, community structure, nestedness and clustering of social networks;
(ii) we approximate the exact set rather than the total number of infected agents and
(iii) our explicit characterization of the limiting process enables a new approach for
finding the optimal seed set in large networks.

Finally, our work is related to a growing literature that studies the limiting behavior
of network processes by using graphons (see e.g. Vizuete et al. (2020); Caines and
Huang (2018); Gao and Caines (2019)).% In this literature, Parise and Ozdaglar (2022)
is the closest to our paper. Parise and Ozdaglar (2022) adopt a similar approach to ours
by first defining a limiting process for an infinite population (in that case a graphon
game) and then showing that equilibria of sampled network games (i.e., games played
over finite networks sampled from the graphon) can be well approximated by equilibria
of the limiting graphon game, for large enough population. We note that the threshold

dynamics considered here coincide with the best response dynamics of a coordination

2This strand is closely related to models of global games with a continuum of players. See, for example,
Morris and Shin (2003, Chapter 5.1) and Morris and Shin (2005).



game (which is an example of a network game). Yet the analysis of Parise and Ozdaglar
(2022) cannot be applied in our setting for three main reasons: (i) Parise and Ozdaglar
consider smooth and convex network games, instead in coordination games agents
have a discrete, {0, 1} set of actions; (ii) coordination games have multiple equilibria
while convergence in Parise and Ozdaglar’s model is guaranteed for games with unique
equilibria and (iii) we consider the entire dynamics given by the threshold model,
instead of only focusing on the equilibrium outcome.

This paper is organized as follows. Section 2 provides an illustrative example of
contagion in a graphon corresponding to the Erd6s-Rényi model. Section 3 describes
our model of contagion in graphons and of corresponding contagion in networks sampled
from graphons. Section 4 states a simplified version of our convergence result (for
ease of readability). Section 5 introduces optimal seeding problems for contagion in
graphons. Section 6 discusses applications of our results to stochastic block models,
i.e., the special class of graphons with finite types. Section 7 considers contagion in
graphons with infinite number of types. Section 8 concludes the paper. Appendix A
states a stronger version of the main convergence result. Appendix B contains technical
details for the results in Section 7. Appendix C contains proofs. While in the main
text we consider deterministic thresholds, in Appendix D we discuss an example of

contagion in graphons with random thresholds.

2 An illustrative example

To develop some intuition, we start our analysis by considering contagion in net-
works sampled from an Erdés-Rényi random graph model, which can be seen as a
special case of a graphon where each edge is independently realized with probabil-
ity p € (0,1]. We here assume that all agents have the same contagion threshold 7.

According to the standard linear threshold model, an agent is exposed at step ¢ if

number of infected neighbours at ¢t — 1

> T. 2.1
number of neighbours T (2.1)

Intuitively, for a very large number of agents, by applying the law of large numbers,
we expect that the number of neighbors for each agent should concentrate around its
mean. Recalling that in an Erdés-Rényi model each link is realized with an independent

probability p we can then expect (2.1) to be well approximated by

p x number of infected agents at ¢ — 1

> 7, 2.2
pXn T ( )

which is the condition for contagion in a complete network with edge weights p. Hence,

in the limit of large populations, the contagion condition simplifies significantly.



To formalize this intuition, we next define a contagion process for infinite popula-
tions by assuming that there is a unit mass of agents, which from here on we identify
with a label in the interval [0,1],® and we assume that each label is connected to any
other label with weight p € (0, 1].

We then define a threshold contagion process for such an infinite population as
follows. Initially, in step t = 0, a set Cy C [0,1] of labels is infected as seeds. In
each subsequent step ¢t = 1,2,3,..., a label becomes infected and is added to set Cy
of infected labels at time ¢t when the integral of edge weights with infected neighbors
divided by the label’s total edge weight exceeds the threshold 7. More formally, a label

€ [0,1] becomes infected at time ¢ if either he was infected at time ¢t — 1 or if he is

exposed at time t, that is,
fthl pdv

fol pdv

In this simple setting, such a model of contagion in a graphon is particularly simple

> T. (2.3)

and provides sharp predictions of agents’ behavior. Denoting by p the measure of a

set, we obtain:
1. If u(Co) > 7, then (2.3) holds and all labels become infected at the first step;
2. If u(Cp) < 7, then (2.3) does not hold and no new label becomes infected.

The graphon model predicts a sharp phase transition. If the size of the seed set u(Cp)
is greater than the threshold 7 contagion spreads to the entire [0, 1] interval while if
1(Cp) < 7 no contagion takes place. Figure 1 suggests that this behavior is predictive
of the contagion outcome in networks sampled from the Erdds-Rényi model (illustrated
for two different choices of p and 7). Specifically, the dashed line in Figure 1 shows
the fraction of agents that are infected at the end of the contagion process in the
graphon model as a function of the size ;(Cp) of the initial seed set. The colored lines
show the fraction of agents that are infected at the end of the contagion process in
networks of different sizes n, sampled according to the Erdos-Rényi model when the
initial seed set is composed of n x u(Cp) randomly selected agents. Each line represents
the average of infected agents over 50 different network realizations. We can see that
for larger n the behavior in the sampled network becomes more and more aligned with
the one predicted from the graphon model. In the rest of the paper, we show that
the intuition from this simple Erdés-Rényi example can be applied more generally to

networks sampled from a graphon.

3Henceforth, we use the term “label” to refer to the infinite population setting. The term “agent” is
reserved for finite populations.
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Figure 1: Final fraction of infected agents as a function of the measure C' = u(Cp) of the initial seed set size
Cy for an Erdés-Rényi graphon and for networks of size n sampled from it (averaged over 50 repetitions) for
different values of p and 7.

3 A model of threshold contagion in graphons

In this section, we consider a general class of stochastic network formation processes
by using the graphon framework introduced in Lovész (2012, Chapter 10). We first
define graphons and sampled networks. We then introduce threshold contagion in a

graphon. Finally, we describe threshold contagion in a sampled network.

3.1 Graphons and sampled networks

A graphon is a measurable function W : [0,1]? — [0, 1] that can be used to describe
a probability distribution over the space of networks. The following definition formally
connects graphons to stochastic network formation models and illustrates how one can

sample from the graphon distribution to construct a sampled network.

Definition 1 (Sampled network). Given any graphon W and an arbitrary number n of
nodes, uniformly and independently sample n labels {ul(»n) ?_, from [0, 1] and construct
a sampled network by randomly connecting nodes i,j € {1,...,n} with Bernoulli
probability W(ugn),ugn) ). Let A™ € {0,1}™*" be the adjacency matrix of such a

sampled network.

In Definition 1, the value W(u,v) of the graphon encodes information about the
strength of interaction between two arbitrary labels v and v. We say that two labels
u and v have the same type if W(u,y) = W(v,y) and W(z,u) = W(x,v) for all
x,y € [0,1], that is if w and v interact in the same way with the rest of the labels.
The Erdds-Rényi model described in Section 2 can be obtained as a special case of
Definition 1 by selecting the constant graphon W (z,y) = p. Note that in this case,
all labels have the same type. In the following example, we illustrate how graphons
can be used to model stochastic block models (SBMs), which have a finite number of

different types.



Ezample 1 (Stochastic block model). Consider networks formed according to a stochas-
tic block model. Agents are divided into k communities and denote by m;, the prob-
ability that a random agent belongs to the community A, with Zi:l w, = 1. Agents
form links with Bernoulli probability wp, p, € [0,1] depending on their communities
h1, he. In many social networks, for example, agents interact with a higher probability
if they are in the same community and a smaller probability if they belong to different
communities. Such a community structure can be generated from a piece-wise constant
graphon Wgpn constructed as follows: Partition [0, 1] into & disjoint intervals of labels
{Zp}r_,, with u(Zy,) = 7, and set

Wspm (4, v) = wp, p, if u € Iy, ,v € Lp,.

By construction, any two labels belonging to the same community have the same type.
Hence in stochastic block models, we can use the words “community” and “type”
interchangeably. For example, Figure 2 shows three networks obtained by randomly
partitioning n agents into two communities (red and blue) with probabilities g =
0.40 and mpe = 0.60 and then connecting each pair of agents in the same red or
blue community with Bernoulli probability w,, = wy, = 0.7, red to blue agents with

probability wg, = 0.4 and blue to red agents with zero probability.

Finally, graphons can be used to encode network formation processes with an infinite

number of types, as the next example shows.

Ezample 2 (Location Model). Suppose that agents (e.g., homeowners or politicians) are
located along a [0, 1] interval (e.g., a street or a political spectrum) and the interaction
between agents ¢ and j is a decreasing function of their distance (e.g., travel time
or political differences). If agents interact with a likelihood that depends on relative
position then there is a continuum of types, each type corresponding to a specific

location. An example of such a graphon is given in Section 7.

3.2 Threshold contagion in graphons

We now define a threshold contagion process in a graphon W : [0,1]?> — [0, 1], with
an initial seed set Cy C [0,1] and a threshold function 7 : [0,1] — [0,1].* Let

1
d(u, X) ::/O W (u,v)lx(v)dv

be the mass of neighbours of label u whose labels are in X C [0, 1], namely the degree of

u with labels in X. Also denote d(u) = d(u, [0,1]) in short. We are primarily interested

4In our model we focus on deterministic thresholds. We discuss in Appendix D how results can be
generalized to thresholds sampled uniformly at random.
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Figure 2: Top: three sampled networks from the stochastic network formation process described in Example 1
for networks of sizes n = 10,20,80. Bottom left: Illustration of the graphon W (u,v) in Example 1 as a
function of both v and v (a linear grayscale colormap is used with white associated to W = 0 and black to
W =1). Bottom right: a schematic of the interaction among the communities in Example 1; nodes indicate
communities, node labels are fractions of agents in the communities, arrows indicate the probability of an
agent from a community interacting with agents from another community.

in the infected set of labels at time ¢ denoted by Cy. At every step ¢ > 1 each label
u € [0, 1] gets infected, and is added to the infected set Cy, if either

e the label was infected at the previous stage, that is, u € C;_1; or
e the label belongs to the exposed set, denoted by C’t, which happens when enough
of its neighbors are infected, i.e., d(u, Ci_1) > 7(u)d(u).

Hence the set of infected labels at time ¢ is defined as C; = Cy_1 U C’t, that is, the
union of previously infected and exposed labels. We denote by C, = U2,C} the final

outcome of contagion and by p(Cw) the reach or spread of contagion (i.e. the measure
of Cx).

3.3 Threshold contagion in sampled networks

The graphon contagion process in Section 3.2 is defined for an infinite population.
We next define contagion in sampled networks of finite size n constructed from the
graphon according to Definition 1. As in Definition 1, we add superscript () in our
notation to refer to the sampled network of size n and subscript ; to agent i. Let

[n] = {1,2,...,n} denote the set of agents in a finite population of size n. We define
(= {ien | € o

9



as the sampled initial seed set, i.e., the set C’én) C [n] of agents whose label belongs to

Cy. Similarly, we can define the threshold of the agent ¢ as the threshold of an agent

with label ugn), ie.,

For Y C [n], let dgn)(Y) stand for the number of neighbors of ¢ in Y in the sampled
network. Denote dg") = dz(n)([n]) the degree of i in short.

Contagion in the sampled network evolves according to the standard linear thresh-
old model of contagion over finite networks. Denoting by Ct(n) the set of infected agents
at time ¢, an agent in the sampled network is infected at ¢ > 1 if either

e the agent was infected at the previous stage, that is, ¢ € Ct(f)l; or

e the agent belongs to the exposed set, denoted by C’t(n)
of its neighbors are infected, i.e., dl(-n)(Ct(fl) > Ti(”)dgn).

, which happens when enough

As in the graphon case, we let Cf,Z’ = U;’iOC’t(n) be the set of infected agents at

convergence. Note that in finite networks convergence happens in at most n steps.’

4 Convergence results

We now show that with high probability one can infer properties of the infected
set of agents in the sampled network (C’C()g)) from the infected set of labels in the
graphon process (C). To this end, we make the following regularity assumption on

the graphon, the threshold function, and the seed set.

Assumption 1. The set Cy is measurable. The threshold function 7(u) and the

graphon W (u,v) are continuous.

Assumption 1 is somewhat strong as it rules out natural discontinuities (e.g., in
stochastic block models), but it allows us to state our main convergence result suc-
cinctly. In Appendix A, we relax Assumption 1 to allow for these discontinuities and
state a stronger version of the results presented in the main text. For simplicity of
exposition, we separate our subsequent analysis in two parts: we first derive a conver-
gence result about nodes that are infected in the continuum process (Theorem 1a) and
then a result about nodes that are not infected in the continuum process (Theorem 1b).
Together these two theorems allow us to derive conclusions about the final outcome of
contagion in sampled networks based only on the outcome in the continuum process.
Specifically, our first result guarantees that when n is large, almost all agents whose

labels are in C', get infected with high probability.

5Contagion is a monotone process. If at any time step, no new agent is infected, then no agent will get
infected at any subsequent time steps. Hence, the contagion process stops after at most n steps.

10



Theorem 1la. Suppose that Assumption 1 holds. For alle, k > 0, there exists N®" and
a measurable set C5, with C5, C Coo, p1(C) > 1 (Coo) — € such that for all n > N&F,
with probability at least 1 — K, all sampled agents whose label is in C5, are infected in

the sampled network.

Our second main result shows that, conversely, if a label is not infected in the
graphon process (i.e. u € [0,1]\Cw), then, for n large enough, with high probability
the agent with that label is also not infected in the sampled process. To this end,
note that the limiting set Dy := [Co]¢ of labels that are not infected is a cohesive set
(Morris, 2000), that is, even if all the agents outside D, are infected, the agents in
Dy, are not. Mathematically, for any u € D,

d(u, [Dso]€) — T(u)d(u) < 0. (4.1)

To pin down the set of agents whose labels are not infected, we need a condition
that is slightly stronger than (4.1). Let us define D as the set of all measurable subsets
of Do for which (4.1) holds strictly. Formally,

D={D C Dw | d(u,D°) — 7(u)d(u) <0 Yue D,} (4.2)

and let Do = UpepD. Note that Dag may not be measurable, but we can define

Hoo = SUppep (D). We can now state the following theorem.

Theorem 1b. Suppose that Assumption 1 holds. For all e,k > 0, there exists N"
and a measurable set DS, with DS, C Doy, 1 (Dgo) > oo —€ Such that for alln > N**¥,
with probability at least 1 — k, all sampled agents whose label is in DS, are not infected

in the sampled network.

Figure 3 illustrates the statements of Theorems la and 1b. Note that the set of
agents whose labels are in Cy \ CS, and Dy, \ DS, for which the theorems are silent
can be made arbitrarily small in a large enough sampled network. However, there is
potentially a “gray area”: the behavior of agents whose label falls into Dy, \ Doo is
not pinned down by the graphon model. To see why, note that these labels are not
infected because condition (4.1) holds with equality. Therefore, even in large samples,
agents whose labels are in D, \ Do, can tip towards being infected or not infected
due to any randomness in the realization of links.

It is important however to make two remarks. First, once Co (and thus D)
has been calculated, it is straightforward to verify whether Do, = Do, in which case
the graphon analysis applies to all labels except for a measure that vanishes with
n. Second, it is possible to derive sufficient conditions for Dy, = Dy to hold (as

discussed in Appendix A). Putting both theorems together, we can conclude that, as

11
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Figure 3: Illustration of Theorems la and 1b. The line segment denotes the [0, 1] set of labels and the nodes
are agents in the sampled networks. Filled nodes are either infected agents (red) or not infected agents (blue).
The status of agents with empty nodes (labelled with question marks) is not predicted by Theorems la and
1b. V™(X) is the set of agents in the sampled networks whose label belongs to X C [0, 1].

long as Do, = Dy, for any € > 0 there is N large enough such that approximately
n X [u(Cx) % €] agents are infected in any sampled process with n > N agents. In
other words, the model of contagion in graphons is a good approximation of network
contagion in any large enough sampled network.

The proofs of Theorems 1la and 1b, which use concentration inequalities and the

notion of cohesive sets, are given in Appendix C.

5 Optimal seeding problems

Our result in Section 4 shows that the outcome of contagion in a graphon is a good
approximation of the outcome of contagion in networks sampled from the graphon.
Such convergence result motivates a new approach to intervention design where in-
terventions are designed based on the graphon limit and then applied to the sampled
networks (instead of being directly designed for the sampled network, which is a com-
putationally intensive procedure and requires exact network knowledge). This new
approach is advantageous if one can easily compute the outcome of graphon contagion
and plan optimal interventions for it. We show that this is the case by focusing on two
classes of optimal seeding problems for graphons as described next. The tractability
of these problems is discussed in Sections 6 and 7 for graphons with finite types and

infinite types, respectively.

5.1 Two optimal seeding problems in graphons

To keep the notation simple, from here on, given a graphon W (u,v) and threshold
function 7(u), we denote by f(Cy) the measure of the contagion outcome Co cor-
responding to the initial seed set Cy C [0,1]. We next define two optimal seeding

problems in graphons: the max-reach problem and the min-seed problem.

12



1. Max-reach: The first problem we consider is to find the seed set that maximizes
final contagion.® Suppose that the initial seed can be at most of measure p > 0.

We define the max-reach contagion problem as

fii= sup  f(Co)
Cocl0.1] (5.1)

s.t. pu(Co) < p.

Correspondingly, we say that a set Cy with u(Cp) < p is an e-optimal seed for
the max-reach problem if f(Cy) > [y —e. A seed set Cp is optimal for max-reach

if it is e-optimal with ¢ = 0.

2. Min-seed: The second problem we consider is to find the minimum size of the
initial seed set that induces a desired level m € [0,1] of final contagion.” We

formalize this notion in the min-seed contagion problem as follows

r¥* = inf C
m Cocl0,1] M( 0) (52)

st.  f(Co) > m.

We call a set Cy optimal for min-seed if f(Cpy) > m and p(Co) = r},. We call
. and there exists a decreasing
nested sequence of sets (C§)2° | such that f(C%) > m for all k and NxC} = Co.

The case m = 1 is of special interest as it corresponds to complete contagion. In

a set Cy limit-optimal for min-seed if p(Cy) = r

the following, we call r] the resilience of a contagion process and a corresponding

limit-optimal seed a sensitive infection region.

While the max-reach and min-seed problems are inspired by corresponding problems
studied over finite networks, we note that the graphon model can give rise to new
interesting phenomena because contagion in graphons evolves over a continuum of

labels.

Ezxample 3. Consider a “hierarchical” graphon in which W (u,v) = p X 1,<4, for some
g > 0 (see Figure 4), and 7(u) = 7 with 7¢ < 1. In this graphon, lower-indexed
labels have a lower degree and higher-indexed labels have a higher degree. Take a seed
Co = [0,¢) for some arbitrarily small ¢ > 0. Note that d(u) = pqu and d(u,Cp) =

p x min{e, qu}. Hence

d(u,Cp) > 1d(u) < min{e,qu} >7qu & u< Tiq

Consequently, C1 = [0, =) N[0, 1] and iterating contagion we get C; = [0, 5(T;)t )N [0, 1]

'Tq

In the context of finite networks, this problem was introduced by Kempe et al. (2003).
"In the context of finite networks, this problem was introduced by Long and Wong (2011).
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W (u,v) = p region

Figure 4: Density plot of the “hierarchical” graphon in Example 3.

leading to f(Coy) = f([0,¢)) = [0,1]. That is, for any € > 0, the seed [0,¢) leads to
complete contagion. On the other hand, {0} = N[0, &) does not lead to any contagion
because it has zero measure. This example shows that the function f; can have a
discontinuity at 0: in this case, f; =1 for all p > 1 but fj = 0. Equivalently, this
process has zero resilience (77 = 0) and the zero-measure set {0} is a sensitive infection
region, that is, it is limit-optimal for the min-seed problem with m = 1 (this can be
verified by setting C§ = [0, 1) for all k.

5.2 Structure of max-reach and min-seed

We conclude this section with a result that describes the general structure of solu-

tions to the max-reach and min-seed problems.

Theorem 2. The following hold for optimal seeding problems:
i) f§=0and rj=0.
i) f, — p is increasing in p for p € [0,77) and f; =1 for p € (r],1].

iti) Let mi = sup,,« fy. Then m — 1y, is increasing in m for m € [0,m]) and

L J—

r =17 for m € (mf,1].

Theorem 2 makes three intuitive claims. First, when the seed budget is zero, there
is no contagion. Second, having a larger budget always increases the possible extent
of contagion above and beyond what is added to the budget. Therefore the spread of
contagion is supermodular in the initial seed sets when thresholds are deterministic
(Jackson and Storms, 2019). Third, complete contagion can be achieved by seeding a

set of measures r]. The claims in Theorem 2 are illustrated in Figure 5.
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Figure 5: Structure of optimal seeding problems (Theorem 2).

6 Contagion in graphons with finite types:
Stochastic block models

As we saw in Section 2, in the case of the Erdés-Rényi model, the outcome of
contagion in a graphon can easily be computed analytically. In this section, we discuss
the computational tractability of graphon contagion for the stochastic block model
introduced in Example 1. We show that in stochastic block models one can recover
the graphon contagion process exactly from an auxiliary contagion process defined over
a finite network with twice as many nodes as the number of communities. Reducing
the graphon contagion process to an auxiliary network contagion process is clearly
advantageous because the number of communities is typically much smaller than the
number of agents in the sampled network. Finally, we show how the reduction to
the auxiliary contagion process can help solve the max-reach contagion problem for

stochastic block models.

6.1 Contagion dynamics in graphons with finite types

We start our analysis by constructing an auxiliary network. Given a stochastic
block model Wggy with & communities {Ih}fl:l and any seed set Cp, we construct
a network with 2k nodes. Let ¢ be the index of the nodes in the auxiliary graph,
and we distinguish two cases. Each node i € {1,...,k} represents the set of initially

uninfected labels in the community 1,..., k, which has measure b; := u(Z; \ Cp). Each
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Figure 6: Left: Schematic of the interaction among the two communities in the graphon of Example 1.
Nodes indicate communities 1 and 2; node labels show the fraction of agents in each community; labeled
arrows represent the probability that an agent from the source community is interacting with an agent from
a destination community. Right: Corresponding auxiliary network with seed set {3,4}.

node i € {k+1,...,2k} represents the set of seeds in community 1,..., k&, which has
measure b; := p(Z;—x N Cy). We then connect nodes in the auxiliary network with
weight wzm) = wy; jjk)ybj (where j[k] := j if j < k and j[k] := j — k otherwise). Note
that an edge in this graph means that i can be infected by j. Let A2™ e R2?*2k he
the adjacency matrix of this auxiliary network. Figure 6 shows the auxiliary network
corresponding to the stochastic block model in Example 1. Armed with this notation,
we can state the following result which describes the graphon contagion process for

stochastic block models.

Theorem 3. Consider a graphon process evolving over a stochastic block model Wspm
with k communities, seed set Cy and in which all labels belonging to the same community
have the same threshold 13, for h € {1,...,k}. Let C}"™ be the set of infected nodes at
time t in the finite contagion process evolving over the auziliary network A** ¢ R2k*x2k
corresponding to Wspnm, when the initial seed set is {k + 1,...,2k} and the remaining
nodes have thresholds T/ = 7; for alli € {1,...,k}. Then node i < k is infected at time
t (i.e. i € C}™ ) in the auxiliary network if and only if the entire block Z; is infected at
time t in the graphon process. Conversely, node i < k is not infected on the auxiliary
network if and only if Z; \ Cy is not infected.

Theorem 3 says that in order to know whether a label in a particular community
has been infected in a stochastic block model, we only need to know whether the entire
community has been infected by looking at the auxiliary network. Note that contagion
in the auxiliary network converges in at most k iterations. Hence, an immediate corol-
lary of Theorem 3 is that graphon contagion in the stochastic block model converges in
as many iterations as the number of communities. In Figure 7, we present a simulation
illustrating the relation between graphon contagion and contagion in sampled networks

for a stochastic block model with five communities. As given by Theorems 1a and 1b,
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Figure 7: Top: Schematic of the interaction among the five communities of a stochastic block model graphon.
Nodes indicate communities; node labels show the fraction of agents in each community; labeled arrows
represent the probability an agent from the source community interacting with an agent from a destination
community. Bottom: Comparison between contagion in networks with n agents sampled from stochastic
block model and contagion in the corresponding graphon for different values of n. Three plots on the bottom
left: the evolution of the fraction of infected individuals in 10 repetitions for each value of n. Bottom right
plot: the average evolution compared with the graphon. We set 7 = 0.16 and initial seed set Cy = [0, 0.1]
corresponding to seeding half of the labels in community 1.

when sampled networks have a large number of agents, contagion in sampled networks

closely approximates contagion in a graphon.

6.2 Optimal seeding in stochastic block models

We can now combine insights from Theorems 1a, 1b and 3 in order to analyze the
max-reach contagion problem (introduced in Section 5) for stochastic block models. Us-
ing Theorem 3, we can reformulate the max-reach contagion problem as an optimization
problem in k variables. Specifically, for any initial seed Cy, let ¢; := pu(CoNZ;) denote
the measure of labels in block ¢ that belong to the initial seed. Recalling that m; is the
fraction of labels that belongs to community ¢, the vector b (defined in Section 6.1) has
components

m—c ifi=1,...,k
bi(c) = (6.1)
i iti=k+1,...,2k.
Let A*(c) € R?*?F he the adjacency matrix of the auxiliary network obtained for
b(c) as in (6.1) and for each label i let f;(c) be equal to one if label 7 is infected at

the end of contagion over the network with the auxiliary matrix A*™(c) € R?**2* and

17



initial seed set {k + 1,...,2k}. It then follows from Theorem 3 that

k
fp= max > (mi—ci)file) + p. (6.2)

€013 ci=p
In other words one only needs to decide which portion ¢; of the budget to allocate to
each community ¢, which is a k dimensional optimization problem. Let the vector c*
be the maximizer of (6.2). Then any subset C§ of [0,1] such that u(C5NZ;) = ¢ is
an optimal seed for max-reach problem. Using Theorems la and 1b, the solution to
the max-reach contagion problem translates into the following graphon-based seeding
policy for maximizing contagion in sampled networks: the planner should seed n x ¢

randomly selected agents for each community 1.

Our seeding policy based on contagion in graphons has two advantages over solving
the original seeding problem in the sampled network. First, solving the optimal seeding
problem in the sampled network requires knowledge of the realized sampled network,
which may be unavailable to the planner. Instead the solution of max-reach problem
(6.2) for the stochastic block model is only a function of the relevant parameters of the
network formation model (i.e., the connectivity between different communities). Sec-
ond, solving the optimal seeding problem in the sampled network requires the selection
of a set of n X p agents from a possible set of n agents. This is a computationally
intractable problem for large n (Kempe et al., 2003). On the other hand, a solution
to max-reach problem (6.2) for the stochastic block model requires finding the optimal
weight of the edges in the auxiliary network A*"*(¢) and is thus a problem in k instead
of n variables. Since typically & << n, even brute force approaches to solving the

max-reach problem reformulation (6.2) are computationally tractable.

6.3 Numerical illustration

To illustrate the seeding policy suggested by the graphon model, we solved the
max-reach problem (6.2) for the stochastic block model in Figure 7 with a budget
p = 0.06. In this case we obtained c¢] = 0.04,¢5 = c5 = 0,c¢} = 0.02 as the optimal
solution, meaning that if only 6% of the agents can be seeded then for the graphon
model it is optimal to seed 4% of the agents in community 1 and 2% of the agents
in community 4. Figure 8 (left) shows the performance of this policy when applied
to networks sampled from the stochastic block model in Figure 7. In the numerical
experiment, for each random network with n nodes, we sampled 300 networks. For
each of these sampled networks, we selected as seed 0.04n agents at random from
community 1 and 0.02n agents at random from community 4 and then computed the

fraction of infected agents at the end of the contagion process. The solid magenta line

18



Graphon policy Greedy policy Random policy

4
o
o
)

o
o -
_

o
o
o
o
o
o

o
~
I
~
o
~

o
S
o
S
o
)

fraction of asymp. infected agents
fraction of asymp. infected agents
fraction of asymp. infected agents

o
o

0
0 100 200 300 400 100 200 300 400 0 100 200 300 400
population size (n) population size (n) population size (n)

o

Figure 8: Fraction of asymptotically infected agents as a function of population size when the seed set
is designed according to the graphon-based seeding policy (left, magenta), a greedy policy (middle, blue)
or random seeding (right, cyan). For each population size n we constructed 300 sampled networks, thus
obtaining a distribution of the fraction of asymptotically infected agents. We here report the median of such
distribution (solid line) and the quantiles as the shaded region.

shows the median over 300 repetitions. For comparison, the middle and right plots
show the median of the same quantity when a greedy and random policy is used. In
the greedy policy, suggested by Kempe et al. (2003), the seed set is constructed by
iteratively adding one agent at a time (up to 0.06n agents) and at each time selecting
the agent that has the highest marginal impact on the contagion outcome. In the
random policy, 0.06n seeds are selected uniformly at random. In all plots, the shaded
area shows different quantiles of the corresponding distribution. Note that no shaded
magenta area is visible for n > 100 because the distribution under the graphon policy
is tightly concentrated around one, showing that the seeding policy suggested by the
graphon model is optimal for this example. This is clearly not the case for the greedy

and random policies, whose performance decreases sharply with n.%

7 Contagion in graphons with infinite types

Stochastic block models involve a finite number of types. Consequently, the optimal
seeding problem can be reduced to finding the fraction of each type that needs to be
seeded, as discussed in Section 6.1. A continuum of types is a more natural assumption
in many contexts, such as spatial location, income and wealth, or political views. These
continuous characteristics can determine the intensity of interactions in a variety of
settings. For the sake of tractability, in the following we focus on a special class of such

infinite type models that give rise to interval contagion, as formalized next.

Definition 2. (W, 1) admits interval contagion if Cy is an interval for any interval seed

set Co. (W, T,Cp) is an interval contagion process if (W, 7) admits interval contagion

8This is not a contradiction with Kempe et al. (2003) since their results are derived for contagion processes
where agents’ thresholds are sampled uniformly at random, while here we consider a homogeneous threshold
7 =0.16. See Appendix D for the analysis of graphon contagion with uniform random thresholds.

19



and Cj is an interval.

In words, in an interval contagion process, the seed set is an interval of labels and
the set of infected labels at any step is also an interval. In light of our interpretation of
a continuum of types/labels, seeding an interval corresponds to targeting agents with
similar characteristics. This can be seen as a social planner’s preference against com-
plexity. The property that any infected interval weakly grows into a new interval (as
opposed to generating disconnected infected sets) reflects the presence of homophily:
it is easier for labels to infect labels that are closer (i.e, have a similar location, so-
cioeconomic status or ideology). In the remainder of this section, we provide further
details on the interval contagion process and its link to homophily, we formalize optimal
seeding problems for interval contagion, and we illustrate our results in the context of
specific graphons commonly used in the literature. In Appendix B we discuss interval
contagion in more detail, characterize general solutions to optimal seeding problems
under relatively weak conditions, and revisit the illustrative examples presented in this

section.

7.1 Interval contagion in graphons

The following is an immediate necessary and sufficient condition for (W, 7) to admit

interval contagion.

Assumption 2. There ezist cutoff iterators « : [0,1]? — [0,1] and 3 : [0,1]? — [0, 1]
such that for all (a,b) C (0,1), for all w € (0,a] and v € [b,1),

d(u, (a,b)) > 7(u)d(u) <= u > «afa,b)
d(v,(a,b)) > 7(v)d(v) <= v < f(a,b).

The idea behind such cutoff iterators is illustrated in Figure 9. Consider an interval
(ao, bo) of infected labels and a label u < ag that is “to the left” of ag. The existence
of cutoff functions entails that u < a becomes infected by (ao, bp) if and only if u >
alag,bo). Analogously, label u > by “to the right” of by gets infected by (ag,bo)
whenever u < B(ag, bg).” As a result, in the first step of the contagion process a label
u is infected if and only if a1 < u < by, resulting in C; being an interval.

Next, we formalize the link of interval contagion to homophily. Let d*(u) =

7(u)d(u). We focus on (W, ) such that d* is bounded away from zero.'"

9Lemma 5 in Appendix B shows that a(a,b) is increasing, right-continuous in @ and decreasing in b, while
B(a,b) is increasing, left-continuous in b and decreasing in a.

07f 7(u) = 0, u gets infected regardless and so u can be included into the seed. If d(u) = 0, the label u is
isolated and irrelevant. As a result, it is innocuous to assume that d* is nonzero.
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Figure 9: Interval contagion process. Cy = (ag, by) is the seed set. Cutoff iterators o and 3 take the contagion
process to the final infected set (a*,b*) in steps indicated by the arrows, so that C; = (a1,b1), Ca = (az, b2),
etc.

Definition 3. We say that a graphon W admits homophily if for all v, W (u,v) is in-

creasing in u € [0,v] and decreasing in u € [v, 1]. We say that (W, 1) admits normalized

homophily if W*(u,v) = VZ&&’S) inf(d*) admits homophily.

It is clear that if (W, 7) admits normalized homophily, then Assumption 2 holds.
Moreover, the next example shows that when d and 7 are constant, homophily suffices

for Assumption 2 to hold.

Ezample 4. (Regular homophilic graphons) Suppose that W admits homophily and
d(u) = d and 7(u) = 7 are constants. Then, by homophily, d(u, (a,b)) is increasing
on u < a and decreasing on v > b. Therefore cutoff iterators exist, and are given by
d(a(a,b), (a,b)) = 7d (or a(a,b) = 0 if d(0, (a,b)) > 7d) and d(B(a,b), (a,b)) = 7d (or
B(a,b) =1if d(1,(a,b)) > 7d).

In Appendix B, we provide a condition on the cutoff iterators (called the single-
crossing property) that guarantees that the interval contagion process on the graphon
is particularly tractable. Intuitively, such single-crossing property guarantees that for
any fixed right extreme b of the seed set [a,b], the contagion behavior depends in
a monotone way on the left extreme a and vice versa for any fixed left extreme a
contagion is monotone in b. This is particularly useful because, under this assumption,
Proposition 3 in Appendix B proves that the outcome of contagion can only take one

of four forms
e No contagion: the final infected set is the same seed set;
e Right-only contagion: the final infected set is [ag, 1);
e Left-only contagion: the final infected set is (0, bo);

e Complete contagion: the final infected set is (0, 1) (either starting “to the right”
or “to the left”).

Under the single-crossing property we are able to analytically tackle max-reach and
min-seed problems in a variety of graphons, under the additional constraint that the

initial seed is an interval, as formalized next.
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Interval max-reach problem For interval contagion, the max-reach problem

(5.1) can be reformulated as the interval maz-reach problem with p

fr= sup  f(lao, a0+ p]), (7.1)
ap€[0,1]

where the only optimization variable is the left extreme of the seed set.

Interval min-seed problem For interval contagion, the min-seed problem (5.2)

can be reformulated into the interval min-seed problem with m > 0 in the following

way:
= inf bg —
"m ao,b;IGI[O,lP 0~ a0
s.t. f([ao, bo]) = m (7.2)
ap < by,

where the only optimization variables are the extremes ag, by of the seed interval set.
We provide explicit solutions to the interval max-reach and interval min-seed prob-
lems for general graphons satisfying the single-crossing property in Appendix B, we

next discuss the application of such results to some illustrative examples.

7.2 Analytical examples

Ezample 5 (Growing Uniform Attachment (Borgs et al., 2011)). Consider the following
network formation process: In each period, a new node arrives, and then every pair
of non-adjacent nodes is connected with probability % This network can be sampled

from the graphon Wepa(u,v) = 1 — max{u, v}, illustrated in Figure 10(i).

In this graphon, any label v is most connected to labels less than or equal to v
and labels sufficiently close to v are highly connected to v, in line with our homophily
interpretation. Lower labels are more connected to all labels, but especially to other
lower-label labels, whereas the reverse holds for higher labels. Thus this graphon
represents a hierarchical structure. A bit of tedious algebra shows that d(u) = §(1—u?).

Pick a constant 7 and observe that

Wiu,v) (2 (1-—max{u,v}
d*(u)  \1 1—wu?
is single-peaked as a function of u, with the peak at v. So (Wgua, 7) admits normalized

homophily, and hence interval contagion.

Corollary 1. Suppose that W = Wgya and 7(u) = 7. Cutoff iterators exist. The
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Figure 10: Growing Uniform Attachment (GUA) graphon (Borgs et al., 2011). Left: density plot for the
GUA graphon. Middle: solution to the interval max-reach problem (7.1). Right: solution to the interval
min-seed problem (7.2). Thresholds are set at 7(u) =7 = 0.75.

solution to the interval min-seed problem is:

r 1—/T2+(1+7)(1-575)?

- T
= Trr if m> g
Sk 1—+/T24+(1+7)(1—m)2 .
T = 4 m — T+§++TT)( ™) if s >m>1—+1-71
m ifl—v1—7>m

The following set is limit-optimal for the interval min-seed problem:

o T | m>5
Co =4 [m —7,,m] if 5= >m>1—+1—-7
[0, m] ifl—+V/1—7>m

Figure 10(ii) shows the solution to the max-reach problem and Figure 10(iii) shows
the solution to the min-seed problem for 7 = 0.75. Figure 11 shows a comparison of
seeding in sampled networks based on the graphon analysis versus greedy or random.
For this illustration we fixed 7 = 0.75 and selected a seed budget of p = 7. The
optimal seed set in the graphon is therefore Cy = | 5= — 77, ﬁ] and leads to complete
contagion. In the graphon policy, to compute the seed set in a sampled network
we seeded all agents with ul(-n) € Cj. Note that the size of the seed set is random
(asymptotically converging to pn). To have a fair comparison we set the random and
greedy seed sets to have exactly the same number of agents as the graphon seed set in
each realization. O

We now return to the Location Model described in Example 2.

Ezample 6 (Location Model (Parise and Ozdaglar, 2022)). The Location Model can
be represented by the graphon Wroc(u,v) = (min{u,v})(1 — max{u,v}), illustrated
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Figure 11: Growing Uniform Attachment (Borgs et al., 2011). Fraction of asymptotically infected agents as
a function of population size when the seed set is designed according to the graphon-based seeding policy
(left, magenta), a greedy policy (middle, blue) or random seeding (right, cyan). For each population size
n we constructed 50 sampled networks, thus obtaining a distribution of fraction of asymptotically infected
agents. We here report the median of such distribution (solid line) and the quantiles (from 0.2 to 0.8) as
shaded region.

in Figure 12(i).
Some algebra shows d(u) = Su(1 — u). Pick constant 7 and observe that

- () ()

T

is single-peaked in wu, with the peak at v. So (Wroc,7) admits normalized homophily

and hence interval contagion.

Corollary 2. Suppose that W = Wioc and 7(u) = 7. Cutoff iterators exist. The

solution to the interval min-seed problem is:

%(T—l— T2+4(1—T)2)—(1—7') ifm>T
T = %(7’4— T2+4(1—m)2>—(1—m) iftr>m>1—v1—-1
m ifl—V1—7T>m

The following is limit-optimal for interval min-seed problem.:

[T — 7%, 7] yfm>rT
Co=qm-rml ifs=>m>1-y1—-7
[0, m)] ifl—vV1—7>m

or the symmetric intervals around 0.5.

Figure 12(ii) shows the solution to the max-reach problem and Figure 12(iii) shows
the solution to the min-seed problem for 7 = 0.75. Figure 13 shows a comparison of
seeding in sampled networks based on the graphon analysis versus greedy or random.

O
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Figure 12: Location Model (Parise and Ozdaglar, 2022). Left: density plot for the GUA graphon. Middle:
solution to the interval max-reach problem (7.1). Right: solution to the interval min-seed problem (7.2).
Thresholds are set at 7(u) = 7 = 0.75.
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Figure 13: Location Model (Parise and Ozdaglar, 2022). Fraction of asymptotically infected agents
as a function of population size when the seed set is designed according to the graphon-based seeding

policy (left, magenta), a greedy policy (middle, blue) or random seeding (right, cyan) for the budget

i (’T +/7m2+4(1 - 7)2) — (1 — 7). For each population size n we constructed 20 sampled networks, thus

obtaining a distribution of the fraction of asymptotically infected agents. We here report the median of such
distribution (solid line) and the quantiles (from 0.2 to 0.8) as a shaded region.

8 Conclusion

In this paper, we introduced a model of threshold contagion in graphons. Our
key result showed that contagion in a graphon closely approximates contagion in sam-
pled graphs. This suggests a new procedure for intervention design where the seed
set is evaluated for the graphon process and then applied to sampled networks. We
showed that calculating the optimal seed set for the graphon model is often analytically
tractable, overcoming the computational intractability of intervention design for large
sampled networks.

We can see several directions for further work. First, one could analyze other con-
tagion processes in graphons, such as the independent cascade model due to Kempe
et al. (2003) or the classic SIR model used extensively for disease spread (e.g., Ace-

moglu et al. (2021)). Second, it is worth better understanding under what conditions
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arbitrarily small seed sets—sensitive infection points—can result in a positive fraction
of the labels being infected. Third, since our results imply that contagion in graphons
well approximates every step of the contagion process, the graphon model could be
used to study the speed of contagion (e.g., Koh and Morris (2022)). Finally, we hope
that our model could serve as a useful starting point for richer economic models, such

as network formation in the presence of shocks (e.g., Erol (2019)).
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APPENDIX

A Convergence results

In this section we consider a generalization of the convergence results presented in
Theorems 1a and 1b that hold under the following less restrictive assumption.

Assumption 3. We assume the following:

e The set Cy is measurable.

e The threshold function 7(u) is piece-wise continuous, u — W (u,v) is piece-wise
continuous for almost all v (i.e., there is a set D, with u(D,) =0 such that u
W (u,v) is piece-wise continuous in u for any v € [0,1]\D,, ) and the set of discon-
tinuities, Dy, := {u | Jv € [0,1]\ Dy, s.t. W(u,v) or 7(u) are not continuous in u},
has measure zero.

e The set [0,1]\D,, is open.

Clearly, Assumption 3 implies Assumption 1. To compactly state our following
results for any set of labels X C [0,1] we define V(™ (X) := {i € [n] | ul(-n) € X} to be
the set of (sampled) agents whose label is in the set X C [0, 1].

A.1 Infected labels and infected agents

Consider the set C, of labels that are infected in graphon contagion. Our first
result is that “almost all” sampled agents whose labels are in C,, will be infected in
any sampled network with large enough population.

Theorem 1a’. Suppose that Assumption 3 holds. For all e,k > 0, there exists N&F
and a measurable set C5, with C5, C Coo, n(CS) > n(Cx) — € such that for all
n > N5 with probability at least 1 — k

viv(cg,) c o),

that s, agents whose labels are in C5 will be infected in the sampled network.

To prove Theorem 1a’, we show that the graphon model is a good approximation
of both the infected set and the exposed set of agents at every step t of the conta-
gion process. Theorem 1a’ follows immediately as a consequence of the following two
propositions.

Proposition 1. (Infected set at time t) Suppose that Assumption 3 holds. For all
t > 0 and e, ke > 0, there exists N;""™ and a measurable set C;t, with C;* C C4,
w(C5t) > u(Cy) — et such that for all n > N;“™ with probability at least 1 — Ky

v ooy c o™,

Proposition 2. (Ezposed set at time t) Suppose that Assumption 3 holds. For all
t > 1 and e, ke > 0, there exists N;""™ and a measurable set C;t, with C;t C C4,

1 (C’ft> > (C’t> — ¢ such that for all n > th’m, with probability at least 1 — Ky
v (¢g) c e,
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In words, Propositions 1 and 2 say that if a label is infected (resp. exposed) at
time ¢ in the graphon process then, for large n, at time t the agent with that label
is infected (resp. exposed) with high probability in the sampled process. We prove
Propositions 1 and 2 jointly by induction in Appendix C). To derive some intuition,
note that Proposition 1 holds at time t = 0 by construction. The main step in our
proof is to show that if Proposition 1 holds for time ¢ — 1 then Proposition 2 holds
for time t. Note that the statements in Propositions 1 and 2 hold for almost all labels
except a set of measure €, which can be made as small as necessary by increasing n. To

understand why we need to exclude a set of measure ¢ consider Proposition 2. In order
(n)

to determine whether an agent with label u;,” who is exposed at time ¢ in the graphon

(n)

process, i.e., u; ~ € C4, is also exposed in the sampled process we need to determine

whether

(n)

For a given label u; ’, we know that

d"ec) =3 AY and 4V =3 Al
jec™ J

are the sum of random variables AZ(?) = Ber(W(uE"),ugn))) induced by ug-n). Our main

argument is to use concentration inequalities to show that, for large n, the two sums

accumulate so that

4 ()
GO g0y and - ™),
mn

where the approximation improves for a large n. Hence, we have that

7 = g (")) = 7 d" ~n(d(w, Coor) — T(ul)d(W™)) =: 0T

(2
()
7
removing a set of measure € from C; we make sure that T' is bounded away from zero
by a positive quantity so that the perturbed term 7" —which accumulates around
T—is positive for n large enough.

Since u,” € Cy, T is strictly positive, but could be arbitrarily close to zero. By

A.2 Labels and agents who are not infected

Next, we consider labels that belong to the set D,. Under the more general
assumption 3, Theorem 1b can be reformulated as follows.

Theorem 1b’. Suppose that Assumptiozz 3 holds. For all g,k >0, there exists N&*®
and a measurable set D5, with DS, C Do, p(D5) > p (Do) — € such that for all
n > N&% with probability at least 1 — k

v (DS,) € DR,

that is, agents whose labels are in DS, will not be infected in the sampled network.

We conclude this section by noting that if De, \ Do does not have zero measure,
then we need to be careful about indices that fall in Dy, \ Dso. Indeed, on the graphon,

31



Co gets infected and Do, does not. When one samples from the graphon, the points
on Do, \ Do can behave erratically. We next derive a sufficient condition for Dy \ Do
to have zero measure.

Remark 1. Suppose that there exists £ > 0 such that for any u € D, we have that
d(u, [Doo]€) — T(u)d(u) < =¥, (A.1)

then Doy = Dwo.

We also note that once Coo has been calculated, it is straightforward to verify
whether pu(Ds \ Doo) = 0 or the stronger condition (A.1) in Remark 1 holds, as the
following example shows.

Ezxample 7. Let us consider again the Erdds-Rényi model with connection probability
p and constant threshold function 7(u) = 7 discussed in Section 2. Fix any seed set
Co of measure p. We next show that the assumption p(Doo \ Do) = 0 is generic in
the sense that it holds for almost all thresholds 7. Recall that we have two possible
contagion outcomes:

1. if p—7 >0, then Cs = [0,1] (all labels are infected);
2. if p— 7 <0, then C, = Cp (no new label is infected).

Condition p(Des \ Do) = 0 trivially holds in the first case since Dy, = Do = 0. We
focus on the second case and show that j1(Dw \ Doo) = 0 holds whenever p — 7 < 0.
In the second case, we have that [Do]¢ = Cs = Cp, hence

d(u, [Dc]) — 7d(u) =pp —1p=p(p—7) <0

for all u € Do and condition (4.2) is met with Do, = Dy, generically for all T # p.

Therefore, we cannot apply Theorems 1a’ and 1b’ for this example only in the non-
generic case when 7 = p. In that case, (Do \ Doo) = 1(Dso). To see this, note that
for 7 = p and for any Dy C Do, it must be u([Dso]®) > p([Doo]®) = u(Coo) = p.
Hence the left hand side of condition (4.2) is greater or equal to p(p — 7) = 0 and
condition (4.2) cannot hold. Hence, when 7 = p, we have that Dy, = 0.

B Contagion in graphons with infinite types

B.1 Interval contagion

Under Assumption 2, if at time step t the infected set is the interval (aq,b;), then
at t + 1 the infected set becomes the interval (a¢41,br+1) where

at+1 = min{ag, a(ar, b))} < ay, (B.1)
bey1 = max {bg, Bas, by)} > by. (B.2)

The existence of cutoff functions thus guarantees that contagion can be succinctly sum-
marized (using (B.1) and (B.2)) by a growing interval described by the two contagion
sequences (at);~o and (by),~, that start from ag and by and that correspond to the left
and right endpoint of the infected interval at time ¢. Note that by construction, (at),~
is a (weakly) decreasing and bounded sequence and (b;), is a (weakly) increasing and
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bounded sequence.'’ Let the limit of these sequences be a* and b*. The outcome of
contagion is then given by (a*,0*). In Figure 9, after interval (a1,b;) is infected the
values of the cutoff iterators change to a(ai,b1) and 5(a;,b;) and in the next step
all labels between as = a(ai,b1) and by = [B(a1,by1) are infected. The limit of the
contagion sequence in the example is (a*,b*) = [0, b*).

Our goal is to characterize the interval of infected labels (a*,b*) in terms of the
interval of initial seeds (ag, bp). To this end, we focus on a particularly tractable set of
cutoff iterators that satisfy the following assumption.

Assumption 4. (Single-crossing property) The cutoff iterators satisfy the single-crossing

property if:

e for all b € [0,1], there exists a crossing function af(b) € [0,1] such that for all
a € (0,b) fifa < al(b): ala,b) < a] and [if a > af(b): ala,b) > a],

e for all a € [0,1], there exists a crossing function 3 (a) € [0,1] such that for all
be (a,1) [ifb< Bi(a): B(a,b) <b] and [if b> B(a): Bla,b) > b].

Assumption 4 is also quite natural and simply says that for any fixed right extreme
b of the seed set, the contagion behavior depends in a monotone way on the left extreme
a. Specifically, there is a threshold ozT(b) such that if the left extreme is smaller than
af(b) the infection propagates (a(a,b) < a), while otherwise it stops (a(a,b) > a).
Similar arguments hold in terms of b for fixed a. We show in Lemma 8 in Appendix B
that of and BT are both increasing. Therein, we also prove that both the examples of
graphons discussed in Section 7.2 satisfy Assumptions 2 and 4.

Figure 14 illustrates cutoff iterators that satisfy the single-crossing property and
shows that, under Assumptions 2 and 4, when one extreme is fixed contagion evolves
in a simple way. Focusing on the case when b is fixed, it is possible to show that
either contagion stops immediately or it spreads until ¢* = 0. Similarly, when a is
fixed contagion either stops immediately or it spreads until b* = 1. During the actual
contagion process both ends of the interval change simultaneously, still it is possible to
show that only four outcomes are possible, as proven next.

Proposition 3. Suppose that given a graphon W (u,v) and threshold function 7(u),
the cutoff iterators o and B exist and satisfy the single-crossing property. Then, given
an initial seed (ap,boy), the outcome of contagion (a*,b*) is given by one of the following
modes:

1. No contagion: If ag > af(bg) and by < Bt (ao), then a* = ag and b* = by.

2. Right-only contagion: If ag > of(1) and by > B7(ag), then a* = ag and b* = 1.

3. Left-only contagion: If ag < af(by) and by < B7(0), then a* = 0 and b* = by.

4. Complete contagion: If (i) [right-first: ag < af(1) and by > BY(ag)] or (i) [left-
first: ag < af(bg) and by > B7(0)], then a* =0 and b* = 1.

To develop some intuition for Proposition 3 let us consider Case 1. Since ag > aT(bo)
no label smaller than ag is exposed at the first iteration (cf. Figure 14(i)) and since
by < BT (ap) no label greater than by is exposed at the first iteration. Therefore, no new
label is exposed and contagion stops immediately.

UFrom here on we omit the word weakly from (weakly) increasing/decreasing and we instead specify
strictly increasing/decreasing if we want to exclude the equality sign.
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(ii) cutoff iterator 3(a,b) for a = a

(iii) a(-, b) vs. a(-, bey1) vs. a(-, b*) (iv) B(as,-) vs. B(as1,-) vs. B(a*,-

Figure 14: Phase diagrams of single-crossing cutoff iterators.

Consider first the case when one extreme of the interval is fized. Figure 14(i) illustrates af(-,b), for some
fixed right end b. Starting from ay one can define the auxiliary sequence {a?}$¢, where a} = ag and
ab,, = min{a?, a(a?,b)}. Note that if we start from ag > af(b) the single-crossing property requires that
a(ag,b) > ag. Therefore, the contagion process stops, and a* = ag. In other words, ag is a fixed point of
the auxiliary sequence. On the other hand, suppose that we start from aj, < af(b). Using the single-crossing
property that a(a,b) < a for all a and that a(a,b) is right-continuous, the auxiliary sequence is strictly
decreasing and converges to a* = 0. Hence all labels in the interval (0,af(b)) are infected. Figure 14(ii)
illustrates the same process when the left end of the interval is fixed at a and 3(a,-) iterates.

During the actual contagion process, both ends of the contagion interval are changing simultaneously. Figure
14(iii) illustrates what happens to «(-,b;) when b; increases to by;11. Using a similar argument to the one
above, if one were to fix b; then the interval (0, af(b;)) would be infected. When b; increases to b;,; however
af(a, b;) falls for all a, so the cutoff af(bsy1) is higher than af(b;). Therefore, any label between of (b;) and
af(bsy1) will end up being infected. The process iterates until all labels in (0, af(b*)) are infected.

Figure 14(iv) illustrates how 7(a) changes as a decreases from a; to a*.
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Suppose instead that ag < af(bp), in this case all the labels in (a(ag, bo),ao) are
exposed. Starting from ag, define the auxiliary sequence {a}%° where ago = ap and
ai’il = min{a?, a(a?, by)}. In this auxiliary sequence, we are allowing only labels
that are at the left of ag to get infected. Clearly, if a label is infected in the auxiliary
sequence, it is infected also in the original contagion process. Since the single-crossing
property gives us that a(a,by) < a for all a < af(by) and we have that a(a,bg) is
right-continuous, the auxiliary sequence is strictly decreasing and converges to 0. This
implies that a* = 0. We now need to distinguish two cases. If by < B7(0) at no
point in the process labels greater than by are exposed and the final contagion outcome
is (0,bp); this corresponds to Case 3 in Proposition 3. If instead by > £7(0), then
by the single-crossing property and left continuity of 5(0,b), the auxiliary sequence
{9352, where b3 = by and by, ; = max{b?, 3(0,b))} converges to 1 (cf. Figure 14(iii)).
Intuitively, the fact that the process where we first allow contagion on the left and then
on the right leads to complete contagion implies that complete contagion occurs also in
the original process when both extremes change simultaneously (because the order of
contagion does not matter).!? Hence, we must have that b* = 1 and the entire interval
[0, 1] is infected at the end of the contagion process; this corresponds to Case 4(ii) in
Proposition 3. Cases 2 and 4(i) work analogously by first applying the cutoff operator
to labels on the right and then on the left of (ag, bo).

In summary, for cutoff iterators that satisfy the single-crossing property, if contagion
starts either to the left or to the right of initial seed set, it will continue until it infects
all the labels on that side. To check for complete contagion, we can simply check
whether contagion starts on one side and whether, after that, it starts on the other
side.

B.2 Optimal seeding

In this section we show how Proposition 3 enables the solution of the interval max-
reach and min-seed problems when cutoff iterators exist and satisfy the single-crossing

property.

Max-reach

Denote by A, the set of values of ag that lead to complete contagion, corresponding
to Case 4 in Proposition 3. Then

Ay :={ag | ag < ' (1),a0 + p > B'(a0)} U{ag | ap < o' (a0 + p), a0 + p > B1(0)}.

If complete contagion is possible with a seed budget of p, then A, is non-empty and any
seed that corresponds to any element of A, is optimal. Otherwise, we must consider
whether partial contagion is possible. Proposition 3 tells us that partial contagion can
be either right-only or left-only. With right-only contagion (Case 2), the outcome of
contagion is (ag, 1]. So the problem boils down to finding the smallest ag such that by
can be taken to be larger than 57(0) with a budget of p. This way, contagion iterates
until b; converges 1. The case of left-only contagion (Case 3) works analogously. This
discussion proves the next result.

2This argument is not entirely rigorous because the first sequence {a2°}$2, may take infinite time to
converge, we provide a rigorous proof of these statements in Appendix C.
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Proposition 4. Under Assumptions 2 and 4, if A, # 0 then f;‘ = 1 and any set
[ag, ap + p] with ag € A, is an optimal seed set. If instead A, =0 and we define"

f/?] = sup 1—ag fl[)?’] = sup ap+tp
ap€0,1] ap€[0,1]
st ag > af(1) st ap < af(ag + p)
p+ap >BT(CL0) p+ap S,BT(O)

then f; = max{p, ~,£2], ~,£3}}.

Min-seed
Theorem 4. Under Assumptions 2 and /4,

+ +
T, = min inf (BT(Q:) — a;) , inf <w — aT(a;)>
0§m<max{1—m,a7(1)} 12x>min{m,6T (0)}
(B.3)

Consider any agy and l;(’g respectively from the arguments of the first and second infimum
terms in Eq. (B.3)."* If 7%, is equal to the first inf, then [ag, ag + 7y,] is limit-optimal.
If 7, is equal to the second inf then [b§ — 7r,, b] is limit-optimal.

Recall from Proposition 3 that right-only or right-first complete contagion happens
if and only if by > ((ap). Then the smallest seed size that achieves right-only or right-
first complete contagion requires taking by = S(ag)+e€ (or ap+e€ if S(ag) < ap). Then for
a given ag, the smallest seed size to achieve right-only or right-first complete contagion
is (BT(aO) — a0)+ + €. Given that right-only or right-first complete contagion happens
with such a seed, the outcome is (0, 1) if ag < af(1) and it is (ag, 1) otherwise. Then the
solution to the interval min-seed problem with the constraint that right-only or right-
first complete contagion happens is given by the first inf term in the expression for 77,.
The same argument applies for the second inf term for the case in which left-only or
left-first contagion happens. Combining the two terms gives us the complete solution
to the min-seed problem. Using this solution, we can also find the limit-optimal seed
set for the interval min-seed problem.

13We define the sup of an empty-set to be 0. Note that the optimization problems in Proposition 4 are

defined as supremum and not maximum hence an optimal seed set might not exists. However, by definition
]

of supremum for any € > 0 there must exists a feasible aé%]s such that 1 — ag%]g > f,[)2] — ¢ and a feasible ag)js

such that a([i]g +p> ~,£3] —e If f .= f,[)2] one can then define an e-optimal seed set as [a([i]g, a([i]e + p]. Instead,

if f; = f,?] an e-optimal seed set is [a([f]g, a([)‘rj:]e +pl.

WFor A C [0,1], #* € arginf,ca g(x) if there exists a sequence (x;); in A such that lim; z; = z* and
lim; g(x;) = inf,c 4 g(z). Note that we are not requiring z* to belong to A hence arginf is non-empty.
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MATERIAL FOR ONLINE PUBLICATION

C Proofs

C.1 Algorithmic definitions of contagion processes
Denote

d(u, Ct—l)
d(u)

be the fraction of neighbors of label u that are infected in step ¢t — 1.
We can write the fraction of infected neighbors in the sampled network at time t as

n . n (TL) .
d™ (Z,Ct(,)l) B > i Aij ﬂct@l ()
() (4 o n 4n) ’
™ @ S A

T'(U, Ct—l) =

P, G =

Algorithm 1: Contagion in a graphon

initialize Cy C [0, 1]
fort=1,...,00 do
for v € [0,1] do
if ue Ci—q or r(u,Ci—1) > 7(u) then
| uweC;
end
end
end

Algorithm 2: Contagion in a sampled network

initialize C(gn) C [n]
fort=1,...,ndo
fori=1,...,ndo
if i € ") or r™(i,C™)) > 7™ then
| iec™
end

end
end

C.2 Auxiliary lemmas for Proposition 1 and Proposition 2

Lemma 1. Let ¢ : [0,1] — [—1,1] be a measurable function. For any ¢ € [—1,1],
define the strict upper contour set of ¢ at £ as ¢~1((¢,1]) = {u € [0,1] | ¢ (u) > £}.
Then p (¢~((¢,1])) is right-continuous in L.

Lemma 1 can be proven following the same arguments as for the right-continuity
of CDFs, hence its proof is omitted.

Lemma 2. Consider any measurable set C. If Assumption 3 holds, then ¢(u) :=
Jo W (u,v)dv — 7(u) fol W (u,v)dv is piece-wise continuous (i.e. can be discontinuous
only in D,,).
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Proof. We show that fc W (u,v)dv is piece-wise continuous in u. Specifically, we prove
that it is continuous for any u € [0,1]\D,. The rest follows similarly. We need to
prove that for any u € [0,1]\Dy, u, — u implies [, W (un,v)dv — [ W (u,v)dv.
For all v € [0,1\D, and u € [0,1]\D,, W(u,v) is continuous in u, hence f,(v) :=
W (up,v)lc(v) = W(u,v)lc(v) =: f(v). Thus f, — f pointwise (except for a set
D, of zero measure). Also note that |f,(v)| < 1 for all v € [0,1], for all n. Then by
Lebesgue’s Dominated Convergence Theorem

lim W (up, v dv—hm/fn dv—/f dv—/Wuv

n—oo C n—oo

for all u € [0,1]\D,,. O

Lemma 3. Suppose that ¢ : [0,1] — [—1,1] is piece-wise continuous (i.e. it is dis-
continuous only in a set Dy, of zero measure). Then ¢~1((¢,1]) is measurable for any
(> 0.

Proof. Since ¢ is piece-wise continuous it is measurable and thus ¢—!((¢,1]) (i.e. the
pre-image of the measurable set (¢, 1] is measurable). O

Lemma 4. If Assumption 3 holds, then Cy is measurable for all t > 0.

Proof. We proceed by induction, first note that Cj is measurable by Assumption 3.
We then show that if Cy_q is measurable then C} is measurable. To this end, define
d—1( fct ) (u,v)dv—7(u fo (u,v)dv and note that, since C;_; is measurable,

qﬁt,l( ) is piece-wise continuous by Lemma 2. As a consequence Cy = ¢4 ((0,1]) is
measurable by Lemma 3 . Finally Cy = C;_1 U C’t is the union of measurable sets and
is thus measurable. O

C.3 Proofs of Proposition 1 and Proposition 2
We prove Proposition 1 and Proposition 2 jointly by induction.

e Step 1: Proposition 1 holds for t = 0.
To prove this statement for any ey, set N;° = 0, C;° = Cp. By definition,
Vi (C50) = VM (Cp) = C’(()n). Hence Proposition 1 holds for ¢ = 0 and any
Ko > 0.

e Step 2: We next prove that if Proposition 1 holds for ¢’ = t—1, then Proposition 2
holds for time ¢.

— Step 2.1: We start by showing that for any e; it is possible to construct a
measurable set Cj* such that:
P1) C’ft is contained in C’t and differs by it at most of measure &;;

P2) any u € C’ft has susceptibility bounded away from zero, meaning that
there exists ¢; > 0 such that d (u, Ci—1) — 7 (u) d (u) > 4.
To this end,
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* Define ¢(u) = d(u,Ci_1) — 7(u)d(u) and M(¥) := ¢~((¢,1]). By
Lemmas 2 and 4 ¢ is piece-wise continuous and thus measurable, hence
p (M(€)) is right-continuous by Lemma 1 and limygop (M (€)) = p (M (0)).
Note that M (0) = Cy by definition. By right-continuity, given e, there
exists ¢; > 0 such that 0 < p (C’t) — (M (4)) < &. Set CE* = M (£y)
which is measurable by Lemma 3.

* Then R R
Cft = M(Et) C M(O) = Ct,

w(C) = (M (@) = 1 (Cr) e,
proving P1).
* Finally, take any u € C’ft Since C’ft = M (¢;), by construction, d (u, Cy_1)—
7 (u) d (u) > 4, thus proving P2).
— Step 2.2: We next show that for n large enough with high probability all

agents in the newly constructed set C’f ! are exposed in the sample. More
precisely, we aim at showing that with probability at least 1 — &,

ugn) eCt = e CA't(n)

We do this in several steps.

« By definition i € C{™ if and only if

n
(n) (n) (n)
D Ay Y A
ject™) 7=l

Fix kg1 = % and g1 = % (where ¢, is as defined in the construction
of the set Cf* in step 2.1). By induction, for any n > N;'7""! with
probability at least 1 — k1

induction step

T=Ycm A7 AT T2 e A R A

S o)
(C.1)
where we used that V(™ (C{'7') C( ) We aim at showing that for n
(n) ('n
large % ( (n) , O 1) nd % ~d (uin)> To this end, let
us define the functions

Ei(u) =Y 1(u" € i W(u,ul™) and  Ex(u ZW
J

(n) _ (n)
so that for example Eg( ) > W( ) = >, E[A4;;"] where
the expectation is over the Bernoulh reahzatlon of the links. We aim at
showing that:
o To(u{™) Ea(ul™)
) =

accumulates around its mean -
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(n)
ii) 72(2’ )

(n)

converges to d (ul ),
(and similarly for 77).
Proof of i): Consider any k,e > 0. We next aim at proving that there

exists N, large enough such that for all n > N; and for any {u 1
with probability at least 1 — k/2

1 n n .
“ 11 (™) — By (u Z Al Z E[AV]| < e/2, for alld,
" ju{Mec juiMec

(C.2)

where the expectation is over the Bernoulli realization of the links and
C = C;'7" (for the Ty term set C = [0, 1] and repeat the same argument).
To this end let us define the new random variables

(n) .o, (n)
121(7-1) _ Aij if u; € C
k 0 otherwise

and note that

1 n) 1 () _ (1 im) 1 7(n)
LY AP Y EAP) =AY - AR

j:u§n) eC j:ug.n)ec J

Moreover note that for each fixed ¢ the variables {Al] )} _, are indepen-
dent and bounded between 0 and 1. It follows by Hoeﬁdmg s inequality
that

1 noo n .
P - Z A _ ZIE[A§j>]| > ¢/2] < 2exp(—2(¢/2)2n
j=1 J
By the union bound,

P[y;zn:fig?) ZE ]| < €/2,¥i] > 1 — 2nexp(—2(e/2)2n).
j=1

The conclusion follows by setting Nj such that 2N, exp(—2(¢/2)2N;) <
K/2.

Proof of ii): The functions
Z 1 (™ C;' 7 YW (u, ugn)) and FEo(u) := Z W (u, ugn))
J J

(n)

are sum of iid random variables since the ; ~ are iid random variables
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uniformly distributed in [0, 1]. Note that

E [W(u, u§n))} = /01 W (u, w)dw = d(u),
E 10" € G715 W (u, )] = /0 1w € CE=1) W (u, w)dw = d(u, C5Y).

By the uniform law of large number'® (uniform in u) for any € > 0 and
for any x > 0 there exists Ns such that for any n > Ny with probability
1—k/2

SuP.cion) | - Balu) — d(w)| < e/2 (C.30)

and similarly

SUPye(0,1] El() d(u,Cffll) < €/2. (C.3b)

Hence in particular

2

L B(u™) — d(u™)| < /2, for all i
n

1 n n .
=By (u{™) — d(ul™, CE7)| < e/2,  for all 4,
" (C.4)

s Combining (C.2) and (C.4), we obtain that for alln > N := max{Ny, Ny}
with probability 1 — &

Ty (ufn)) > nd (ugn), Cffll) — ne
Ts(u (n)) < nd( (n )) + ne

for all 4.

* Set k= and € = %. Plugging-in the bounds derived in (C.5) in (C.1),
using the fact that d (u, C’fi‘ll) > d (u,Cy—1) —ey—1 and the union bound,
we get that for all n > th”“ = maX{NtEﬁ‘ll’m‘l,N} with probability

ke —

atleast 1 — ki1 —k=1-—1 =1- kK

22
",Ci) = (o) - e
9,60) — et = () d (uf?) - 2

1
—92-| =
=0

Tznp(

ool

> n[ﬁt — &1 — 26] = Tlgt |:1 —

(
(

O |

as desired.

5Define F (z|0) = W (0, z) and F (z|0) = 1(z € C;*;")W (0, z) for E3 and E1, respectively. Then F(z | 0)
is piecewise continuous in € for almost all z and measurable in x for each 6, hence uniform law of large numbers
applies. Additionally, we use the union bound to bound the two quantities in (C.3) simultaneously.
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s Overall we have shown that for all n > N with probability at least
1-— 2%
ugn) eCt = e CA't(n)
e Step 3.
Finally, we prove that if Proposition 1 holds for ¢ = ¢ — 1 and Proposition 2 holds
for t = t, then Proposition 1 holds for ¢ = t.

— Recall that Ct(n) = C’t(f)l U C’t(n) and C; = Cy_1 U C’t (the infected at time ¢
are the union of the infected at time ¢t — 1 and the exposed at time ¢) .

— For any &, k¢ by Proposition 1 applied to t' = t — 1, there exists Nfﬁ/f"it/ 2
and C’tsi/f such that ,u(CtEi/f) > u(Cy—1)—e¢/2 and for all n > Nfi/f’mm with
probability 1 — x¢/2

2
v c o

— Similarly, for any e, ¢ by Proposition 2 applied to ¢ = t, there exists
th/2’“t/2 and C’ft/Q such that u(é’ft/z) > w(Cy) — &/2 and for all n >
th/2’“t/2 with probability 1 — ¢/2

vOCE?) c ¢

— Let us define N;""™ := max{Nfi/lz’m/z,th/Q’Ht/z} and Cft = Cfi/f u C’ft/Q.
Note that since both C’f’_‘/lz and C’f t/2 are measurable so is their union.
— Moreover, for any n > N;"", u(C;t) > u(Cy) —e; and with probability 1— r;

v (Csty = vI(CaPucs?) = v (e Huv ) (65 ¢ [efmue™) = oM.

This concludes the induction and proves Propositions 1 and 2.

C.4 Proof of Theorem 12’

e Consider the contagion process in the graphon. The sequence p(CY) is increasing
and is upper bounded by 1. Hence it is convergent, let u* be its limit. Clearly,
it must be p* = u(Cx). By definition of limit, for any € > 0, there exists a time
T > 0 such that u(Cr) > p(Co) — /2.

e By Proposition 1, there exists NZEF/Q’H and C;m such that M(C;/z) > u(Cr) —e/2
and for all n > N;/ > with probability at least 1 — k&,

vm(ce?y c .

e Let N¢:= NI/** and C%, := CZ/*. Then C%, = C5/* € O C C and p(CS,) =
M(C;/z) > u(Cr) —e/2 > p(Cx) — €. Moreover

v(ce) = v c o c o,
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C.5 Proof of Theorem 1b’

e First of all note that since pi0c = suppep p(D) for any € > 0 there exists a set
Dy € D such that pu(Doo) > piso — €/2.

e Next note that since Doy € D, ¢(u) := d(u, D) — 7(u)d(u) < 0 for all u € Dy.
Let (u) := —p(u). Then Dy := ¢~ ((0,1]). Similar arguments as in the proof
of Theorem 1 show that for any € > 0 it is possible to construct a measurable set
DS, C Do such that u(DS) > p(Doo) — €/2 > oo — € and there exists £ > 0
such that d(u, D) — 7(u)d(u) < —¢ for all u € DS_.

e We next show that with probability 1 — x for n large enough, V() (Df,o) is a

cohesive set. To this end, we need to prove that if ugn) € D, then

T, := Z Agl) —Ti(n) Z AZ(;L) <0.
J

. (n) = c
Jluj €[Dg] N—

(n)
T3(u§n>) o)
Note that Tg(ugn)) is as defined in (C.1) and Tg(ugn)) has the same structure as
Tl(ugn)). In a similar way we can conclude that for any x > 0 and § > 0 there

exists Ns, such that if n > Ns, with probability at least 1 — & for all ¢
Tg(uz(»n)) <nd (ugn), [Dgo]c) + nd
TQ(U,En)) > nd (ugn)) — nd.

Hence

< |d(”, [D5)) + 6 — 7" (d(u") - 9)]
< n[—f+ 2]

where we used d(u(n), [D5.]9)) — Tl-(n)d(u(n)) < —0 since u{" € Ds,. By setting,

7 7 7
0 < % and n > N" = Ns,. we get T; < 0 as desired.
e Since V() (Dgo) is a cohesive set and none of the agents in V(™ (Dgo) is initially
infected, these agents cannot be infected during the process, thus terminating the
proof.

C.6 Proof of Theorem 2

To keep the notation simple, from here on, given a graphon W (u,v) and threshold
function 7(u), we denote by x(Cj) the graphon contagion outcome Cy corresponding
to the initial seed set Cy C [0, 1] and we recall that f(Cp) = u(x(Co)).

i) It is clear that fj = 0 and r§ = 0 since starting from a zero measure set contagion
does not iterate.

ii) Take any p such that p < rf. In this case, it is not possible to achieve complete
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contagion, and thus f; < 1. Take any e < 1 — f;. Take a sequence (CE)i such that
w(Ch) < p, F(CE) 1 f,. For each t, f(CE) < fy < 1—e Then there exists a set Z;
with measure € in the complement of x(C¥). Denote Z; = C§U Z; . Z, has measure at
most p + €. Then f(Z]) < fr... Also x(Z;) D x(C§) U Zy and so f(Z;) > f(C§) + e.
Therefore, f;, . > f(C¥) + €. Taking the limit, we find foie > f; + €. This proves that
f, — p is increasing for p € [0,77). It is clear that for p > 7], f; = 1.

iii) Regarding m —r}, we can use the same logic. First, take m > mj. By definition
of mj it is not possible to reach a set of measure m with an initial seed of measure less
than 77, on the other hand for any p > r] it is possible to find an initial set of measure
p that induces complete contagion. Hence it must be 7}, = r].

Take m < mj, by definition of mj, it must be 7}, < r] (there exists p < r] s.t.
f5 > m hence 1}, < p < r]) which implies fre < 1. Let e <1— fJ. . Take a sequence
C} such that f(C{) > m—e and u(C§) | r¥,_.. Take the union of C§ with an € measure
set Z; inside the complement of x(C}) (which exists since S S ff < 1= €).

Call this union Z;. We have f(Z]) > f(C§) + € > m. Then u(Z) > rf,. Also,
w(Z)) = u(Ch) + el i, + e Hence, rk,_ + € > r¥ which completes the proof.

C.7 Proof of Theorem 3

As first step we partition the labels into 2k classes {Z/{ k, where U; = Z; \ Cp for
j=1,...,k is the set of labels in community j that do not belong to the seed set and
U; = Ij_k NCy for j =k+1,...,2k is the set of labels in community j that belong to
the seed set. It is immediate to see that labels within the same class have always the
same state (i.e. either the entire class is infected or nobody in the class is infected).
Take then a label u in class i < k, such label (and therefore its entire class) is infected
at time t if either it was infected at time ¢ — 1 or if it is exposed, meaning

d(u,Ci—1) — md(u) >0

1 1
(:’/ WSBM(“y”)]lct_l(U)dv—Ti/ Wsgm(u, v)dv > 0
@Z/ wiik Loy L dU—TZZ/ wmk]dy>0 (C.7)

@Zwm[k]b mlog () —Tzzwumb
j=1

where 1oaur (j) = 1 if class j was infected at time ¢ — 1. The last equation in (C.7) is
exactly the contagion process in the auxiliary network.

C.8 Proof of Proposition 3

We start with some lemmas. Denote A, = {(a,b) € [0,1]* : a(a,b) < a} and Ag =
{(a,b) € 10,1]% : B(a,b) > b}.

Lemma 5. Monotonicity of iterators: a(a,b) is increasing in a and decreasing in b on
Aq. B(a,b) is decreasing in a and increasing in b on Ag.
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Continuity of iterators: a(a,b) is right-continuous in a and left-continuous in b on
Aq. B(a,b) is right-continuous in a and left-continuous in b on Ag.

Proof. Note that d(u, (a,b)) is an integral of a non-negative function from a to b, hence
it is continuous in (a,b), decreasing in a, and increasing in b.

Monotonicity: Take (a,b), (a’',b) € A, such that a < a’. Then for any u, we have
d(u, (a,b)) > d(u, (a’,b)) and for any u € (0, a], 1ysa(a,p) = lusa(e,p)- This implies that
a(a,b) < a(d’,b). Similar arguments follow for the remaining monotonicity properties.

Continuity: Note that d(u, (a,b)) is continuous in @ and b as it is an integral from
a to b. Then for all u, there exists m(u,b) > 0 such that d(u, (a,b)) > 7(u)d(u) iff
a < m(u,b). Therefore, for all u € (0,a], a < m(u,b) iff u > a(a,b). Now, for a
fixed b, take a discontinuity point ag of «(-,b) such that (ag,b) € A,, if any exists.
As « is increasing in a on A, left and right limits of «(a,b) at a = ap exist. Denote
them a(ay ,b) and a(ag,b). By the property [a < m(u,b) iff u > a(a,b)], m(u,b) = ag
for all u € [a(ag,b),a(ad,b)]. Then ag £ m(u,b) for u € u € [a(ay,b), ala,b)],
implying that u # a(ag,b) for u € [a(ag ,b), a(ag,b)]. Therefore, a(ag,b) > a(ag,b).
Thus, a(ap,b) = 04(%F ,b). This shows that « is right-continuous in @ on A,. Similar
arguments can be used to show the remaining continuity properties. O

Denote a(a, b) := min {a, a(a,b)} and B(a,b) := max {b, 3(a,b)}. Further note that
a=aonA, and 3=/ on Ag. Recall how we have defined contagion sequences: we
start with the seed (ag,bp) C [0,1], and iterate a; with & and b, with 3. Since these
are (weakly) monotone and bounded sequences, the limits exist and we denote them
by a* and b*. The fact that o and § are right-continuous in a and left-continuous in b
(see Lemma 5) along with the fact that (a;),~ is decreasing and (b;),~ is increasing,
guarantees that a* = a(a*,b*) and b* = B(a*, b*). -

Note that in the contagion sequence both arguments of & and 3 change in time. It
is useful to define two auziliary sequences where only one argument changes in time.
Specifically, construct the auziliary sequence (at)t>0 given by do = ao, a; = a(ag—1,b%).
Similarly, construct (bt)t>0 given by bo = bo, by = B(bt 1,a%).

Lemma 6. lim; a; = a* and lim; b; = b*.

Proof. By the monotonicity properties of « and  in Lemma 5, we can prove [a; < a;
for all ¢]. In fact, by induction: a;—1 < a;—1 and by—1 < b* = @y = @(a-1,0*) <
alai—1,bi—1) = a;. Moreover, [a; > a* for all t] since: a; = a(a;—1,b*) > a(a*,b*) = a™.
Thus a* < a; < a; for all ¢, which implies that lim; a; = a*. Similarly, the limit of
(Bt)tZO is b*. O

Now we can work with the auxiliary sequences in order to identify necessary con-
ditions for the limits a* and b*.

Lemma 7. Limit properties: If ag > of(b*), then a* = ag. If ag < af(b*), then a* = 0.
If BY(a*) > b, then b* = by. If BT (a*) < by, then b* = 1.

Proof. If ag > af(b*), by Assumption 4 and right continuity of a(-, b*) , a(ag, b*) > ap.
Then a1 = @(ag, b*) = ag. So, ag = a1 = ... = a*. So the limit is a* = ay.

If ap < of(b*), by Assumption 4, a(ao, b* ) < ap. Then a; = @(ag, b*) < ag < af(b*)
unless ag = 0. Similarly, as = &(a1,b*) < a1, unless a; = 0. So (a;), strictly decreases
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unless it hits 0. Recall that the limit of {a;} is a*. Suppose that a* > 0. Recall that «
is right-continuous and increasing in a. Thus & is right-continuous and increasing in a.
Then a* = limy_yo0 G¢41 = limy—yo0 @(ay, b*) = @(a*,b*) and thus a* = a(a*,b*). This
is a contradiction since by 0 < a* < qp < o*(b*) and Assumption 4, a* > a(a*,b*).
Hence it must be a* = 0.

Similarly, if 8(a*, bg) < b, then b* = by. If B(a*,by) > by, then b* = 1. O

Lemma 8. Monotonicity of crossing functions: of(b) and BT(a) are increasing.

Proof. 1f b > ¥, then a(a,b) < a(a,b’). Under Assumption 4, this implies that af(b) >
of (¥). This is, of is increasing under Assumption 4. Similar arguments apply to 5.
See Figure 14 for a visualization. O

Now we are ready to state the proof of Proposition 3 using Lemma 7 and 8:
Case 1
This can be proven as detailed after the statement of Proposition 3 in the main text.
Case 2 and Case 4a
Recall that A7 is an increasing function (Lemma 8) and a* < ag. Hence B1(a*) < BT (ao).
The condition by > 37(ag) thus implies by > B'(a*) which by Lemma 7 leads to b* = 1.
We now distinguish two cases.
Case 2: ag > a'(1) implies ag > a'(b*) and by Lemma 7 a* = aq.
Case 4a: ag < af(1) implies ag < af(b*) and by Lemma 7 a* = 0.
Case 3 and Case 4b
Recall that af is an increasing function and by < b*; hence af(by) < af(b*). The
condition ag < af(bg) thus implies ag < of (b*) and by Lemma 7 we obtain a* = 0. We
now distinguish two cases.
Case 3: by < B7(0) implies by < Bf(a*) and by Lemma 7 we obtain b* = by.
Case 4b: by > B7(0) implies by > Bf(a*) and by Lemma 7 we obtain b* = 1.

C.9 Proof of Theorem 4

We distinguish two cases:

e Complete contagion (m = 1)
Proposition 3 implies that complete contagion can happen in four cases.

1. ag,bp € [0,1] and conditions of case 4a hold. In this case we define

ao,bcl)rel{mp bo = ao
7:[14(1] = st. 0<ag<al(l) | _ inf ( inf by — ao)
1> by > Bl(ag)|  OSao<e’® \12bo>5T(a0)bo=a0
ag < by
_ (C.8)
+ +
- 0§a31<1£ﬁ(1) (BT(GO) B ao) - nglfaff(l) <5T(f’3) - 1”) : (C.9)

2. ap, by € [0, 1] and conditions of case 4b hold
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In this case we define

inf b() — Qo
ao,bo€[0,1]2
f[14b] = st 0<ag<al(bo)| _ inf ( inf bo — aO)
1 Z b() > 5T(0) 12b0>ﬁf(0) 0§ao<aT(b0),a0§bo
i ap < bo
(C.10)
inf (b —al(b ))+ inf (y—of( ))+ (C.11)
= in -« = in -« . .
i) ) T e VY
3. ap = 0 and conditions of case 2 hold
This can only happen if af(1) = 0. In this case we define
=21 _ gt ~[40]
i = inf by = p1(0) > 7. C.12
Pl it =507} (C12)
4. bp = 1 and conditions of case 3 hold
This can only happen if 8(0) = 1. In this case we define
A= inf 1—ag=1-af(1) > (C.13)

ap<at(1)

Hence 7 = min{7l”) 77 7ol #lHhy — pin it G400y

e Partial contagion (m < 1)
Proposition 3 implies that partial contagion can happen in three cases.

1. The conditions of case 2 hold:
In this case a* = ag and b* = 1. Suppose first that we want to have final
contagion of exactly m’ (instead of > m). We can then define

inf by —
ao,bég[o,lp 0T
o
fi]/ — st. 1—ap=m ' (C.14)
ap > a'(1)
I bo > max{ag, B'(ao)} ]

Note that this problem is well-defined only if 1 —m’ > af(1). In this case

inf by — (1 —m')
72 = [boclo] = max{0, T (1—m/)—(1—m/)}.
s.t. bo > max{l — m', BT (1 — m')}
(C.15)
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Then

inf by —
ao,b;IEI[O,lP 0 0
72— st. 1—ap=>2m _ nf #2
ap > aT(l) 1-af(1)>m'>m
I bo > max{ao, 57 (ao)} ]
= inf max{0, 3T1(1 —m') — (1 —m')}
1—-at(1)>m/>m
= inf max{0, 87 (z) — z}.
at()<z<1-m
2. The conditions of case 3 hold:
With the same arguments as above it can be shown
inf by — ]
ao,l);rel[o,l]2 0 0
7:7[73;] — st. bp>m
ap < min{bo, o (by)}
i bo < 57(0)
nt (=0l
= -« .
meysro) 0
3. The conditions of case 1 hold:
In this case, the initial seed set has measure m
Overall 7 = min{m, 7“7[721],?75],?[4(1] ~[4“} = mln{rﬁ],rg]j[m] ~[4b} which leads

o (B.3).

We next compute the limit-optimal set. First, for some A C [0,1] and a function
g :[0,1] — R, define arginf operator as follows. z* € arginf,c4 g(x) if there exists a
sequence (x); in A such that limy x; = 2* and lim; g(z;) = inf,c4 g(x). Note that such
x* belongs to [0, 1] but does not necessarily belongs to A. Moreover, arginf,c g(x)
is non-empty. This can be seen as follows. There exists a sequence (Z;); in A such
that lim; g(Z;) = infyea g(x). The interval [0, 1] is compact, so (Z;) has a convergent
subsequence, say (z:)¢. Then lim;z; € arginf,c4 g(z). Notice that the sequence (x¢)
in the definition of arginf can be taken to be monotonic without loss of generality.
arg sup can be defined analogously.

First consider the case of 7, = 77£4a]. Take any aj € arginfo, 1) (Bl (z) — a:)+

Take a monotonic sequence (aj); in [0, af(1)) with (@) — af and (B7(af) — &6)+ —
[4(1] Set b} = af + rg al + ¢ for some ¢ | 0. Then

/ A\t . "
bpwmﬂmzw(@+QWM—w))y?w%»
If (a§); 1 af, then set af = af. Then we have afy = a}y < af(1) and b}y > limy gf(al) >
BT(al) because BT is an increasing function (Lemma 8) and (@y)y is an increasing
sequence. If @ | aj, then set a) = a. Then we have af = a} < a} < af(1) and

bl > limy B1(al) > B7(ay) = Bi(al) because B is an increasing function and (@ )y
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is a decreasing sequence with limit af = af. In both cases, we have a) < af(1) and

by > BT(al). Thus, f(([ab,bh]):) = 1 (by Proposition 3). Also, in both cases ([a}, bh]):

[4 ]]

is a decreasing nested sequence with intersection [aj,af + 7 '], which has measure

[ al =l4a

Then by definition, [af, aj + 75 ]] is limit-optimal for min-seed.

Next consider the case of 7, = rg !l Take by € arginfy>, -t (0) ( - aT(y))+. Take

_[4b]
1

- +
a monotonic sequence (bf); in (87(0),1] with by — bf and (bo — aT(bf))) — 7 . Set

af) =by—11 (48] _ ¢; for some ¢; | 0. Then we have
~[4] P e it tn )T N N4
aby < by — = htl/n by — (bo -« (b0)> < htr/na (by ).

If b}, | b5, set by = bl . Then we have b = by > 7(0) and afy < limy of (B5) < of (b})
because a is an increasing function (Lemma 8) and (bf)y is a decreasmg sequence.
If by 1 b, set by = b5. Then we have b = b5 > b} > B1(0 ) . and ab < limy of (BY) <

aT(bO) = aT(bt) because of is an increasing function and (b4)y is an increasing se-
quence with limit b} = bh. In both cases we have b > 37(0) and al < af(bh). Thus,

F(([ad,bk])t) = 1 (by Proposition 3[) Also, in both cases ([af), b}]): is a decreasing nested

sequence with intersection [bf — 7 4a] ,b5], which has measure rg "l Then by definition,
~[4a] . .
by — 7 ,bg] is limit-optimal for min-seed.

Consider the case of 7, = = 72, Take any ag” € arginf,i(y<p<i— m( )Jr

Take a monotonic sequence (@), in [af(1), 1—m] with (@), — af* and (B7(a§) — a0)+ —
72!, Note that ag* € [af(1),1 —m]. Set b} = af* + 2+ ¢ for some ¢ 1 0. Then

’ +
bl > a4+ 72 = lim (at, + (5* (ah) — at,) > > lim gt (ah

If (@4); T ai*, then set af = af. Then b > limy 57(al) > B1(ah) because BT is an
increasing function and (a )y is an increasing sequence. If a; | aj*, then set a, = af*.
Then we have by > limy 81(a4) > 8(ag*) = BT(af) because 5T is an increasing function
and (dé’)t/ is a decreasing sequence with limit af* = af)). In both cases, we have
aly € [af(1),1 —m] and b} > BT(al). Thus, f(([ah,bh]):) = 1 — @) (by Proposition 3).
In both cases, 1 —af, > 1 — a§* > m, and so f(([a},bf]):) > m. Also, in both cases
([al, b))t is a decreasing nested sequence with intersection [af*, af* + ﬂ[%}], which has
measure 72. Then by definition, [af*, ay* + FL,%]] is limit-optimal for min-seed

Finally consider the case of 7, = . Take by" € arginf,, <, <31 (p) (y— aT(y))Jr
Take a monotonic sequence (b}); in [m, 57(0)] with b, — bj* and (EB — aT(56)>+ —

Note that b}* € [m, 7(0)] .Set a}y = by* — 3 — ¢, for some ¢ 1 0. Then we have

~4 ~41 ~g \ T ~41
ab < b — 73 = lim <b3 - (bg - oﬁ(bg)> ) < lima'(3).

t/

If by | by*, set by = by . Then we have af) < limy af(by) < af(b}) because af is an
increasing function and (bo )¢ is a decreasing sequence. If bt 1 b*, set b = bi*. Then
we have af < limy of(0) < af(b5*) = af(bl) because ozT is an 1ncreasing function
and (bt )¢ is an increasing sequence with limit b%* = bf. In both cases we have b} €
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[m, B1(0)] and @} < af(b}). Thus, f(([ah,b]):) = bl (by Proposition 3). In both cases,

bl > by* > m, and so f(([ah,bl]):) > m. Also, in both cases ([a, bh]): is a decreasing

nested sequence with intersection [b§* — fﬁ],bg*] which has measure 7. Then by

definition, [b§* — L3l ,bg*] is limit-optimal for min-seed.

C.10 Proof of Corollary 1

Degrees and cutoff iterators
Consider the GUA graphon Wgpa(u,v) =1 — max {u,v}.

:/OIWGUA(u,v)dv:/01(1—max{u,v})dv

:Aua—umv+Lu1—wm)

Yacwz=la_wy

:u(l—u)+2 5

For u < a,
b b
d(u, (a,b)) = / (1 — max {u,v})dv = / (1—v)dv= %((1 —a)? - (1-0)?)
d(u, (a,b)) > 7d(u)((1 — a)* = (1 = b)?) > 7(1 — u?)

= w>1-7YH1-a)*-(1-b)?
— u>+\/max{0,1 — 7 ((1 —a)2 — (1-10)2)} = a(a,b)

For u > b,

b b
d(u,(a,b)):/ (1—max{u,v})dv:/ (1—-u)dv=(1-u)(b—a)

d(u, (a,b)) > rd(u)(1 — u)(b— a) > 5(1 —u?)
= u<2b-a)T -1

<:>u<m1n{1max{02 —a)T —1}} B(a,b)

Crossing functions
For any a,b € [0,1]

ala,b) <a <= 1—7 (1 -a)?-(1-b)? <d?
— 7(1-d*) < (1—-a)*—(1-0b)?
= O<(1—1—7’)@2—2@—1—(1—7—(1—6)2)

1—+/m2+(1+7)(1-b)2 y 14+ /72 + (1+7) (1 —b)2
a >
L+7 1+7

= |
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Hence

af(b) = max{ L=/t (L7 ( 1_b)2}

147
Moreover
Bla,b) <b < 2(b—a)T ' —1<b
= (2r'-1)b<1+2r %

1+2r1a
2r—1 -1

5T(a) = min{l, 22a+7-}

-7

— b<

Hence

Therefore, o and § both satisfy single-crossing.
The solution to interval min-seed

7 = min inf <5T($) — m)>+ , inf (a: _ aT(:c)>+
" 0§a:<max{1—m,aT(1)} 12z>min{m,6f(0)}
+ +
= min inf fl—2)—(1-= , inf z—al(z
{12x>min{m,1oﬁ(1)} <ﬁ ( ) ( )) 121>min{m,BT(0)}< ( )> }

T +
= min inf min {m, (2 - :n)} inf (:z: - ozT(x))
l>x>m1n{m, 1+7—} 2—71 l>x>m1n{m }

2T

2 +
= min { min {min {m, T} ) T} inf (m - CMT(LE)>
1+7 2—7 1>z>m1n{m }

T +
=minqm, —, inf (a: - aT(az)>
2 =7 1>z>min{m,57-}

—T

= inf <x - ozT(:L‘))Jr.

x>min{m,ﬁ}

This implies that the optimal seed always involves left contagion or no contagion.

Ty, = inf (z - aT(ac)>+

4 . T
x>m1n{m,—}
2—7

+
1 — (1 (1—x)?
= inf T — max \/T +7) 7)
a:>m1n{m,2 T} I1+7

= inf
x>m1n{m, 57 }

T x<1—\/1—7"

1—/724+(1+7)(1—x)2
147

Note that z and z — are both increasing functions. Thus
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r 1—/T2+(1+7)(1-575)?
2—1

T m>L

+7 - 2—7

~% _ 2 _ 2

T m_ VT +§1++Tr)(1 m) S >m>1-yI—r (C.16)
m 1 l—7>m

Resilience and complete contagion

. L 1— 24 (14 1—-T_)2
We can see that the resilience is 7] = 57— V055
limit-optimal seed is

Partial contagion

It is not possible to have contagion of exact size m’ € (

57—,1). Hence 57 is a
discontinuity point in terms of the size of contagion.

Contagion of exact size m’' € (1 —V1-= T,T) is achieved with the limit-optimal
seed set

(1_ VP (0 +7) 0 —ml)? m) |

147

Contagion of exact size m’ < 1—+/1 — 7 is possible only when there is no contagion.
This can be achieved with any seed of size m/.

Interval max-reach

. pr>2177—_ 1—/m2+(1+7)(1-5)?

e —, by equation (C.16), f; =1.
1- 24(1 1—_T )2 _ )
o If 57 — VT +(1::)( %) >p>1—+/1—7, then [, is given by p = f; —
17 (L) (1 3)?
: (1+TT J1=7) , which is equivalent to

w_ PA+T)—V(p—T7)*+p?T
i = =

e If p<1—+/1—r7,then f;‘ = p for any seed.

C.11 Proof of Corollary 2

Degrees and cutoff iterators
Wi (u,v) = min {u, v} (1 — max {u,v}).

1 1
d(u) = /0 Wi (u,v)dv = /0 min {u, v} (1 — max {u,v})dv

u 1
= / min {u, v} (1 — max {u,v})dv + / min {u,v} (1 — max {u,v}) dv
0 u
B “U ) do 1u oV do u? 1—u)?  u(l—u)
_ /0 (1-u)d +/u (1—v)dv = |

—?(1—u)+u

2 2
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For u < a,

b b IO
d(u,(a,b)):/ min{u,v}(l—max{u,v})dv:/ U(l—v)dv:u(l ) 2(1 b)

d(u, (a,b)) < 7d(u) <= u<1—71(1—a)*—(1-b)?)

Hence
a(a,b) = max {0,1 — (1 -a)?-01- b)Q)} .

For u > b,

b? — a2

b b
d(u, (a,b)) = / min {u, v} (1 — max {u,v})dv = / v(l—u)dv=(1-u)

d(u, (a,b)) > 7d(u) <= u <71 (b* —a?)

Hence
B(a,b) = min {1,7_1(62 — a2)} .

Crossing functions
For all a,b € [0, 1],

ala,b)<a <= 1-7H1-a)?-(1-bH<a
— 0<(1—-a)?—-7(1—a)—(1-0)?

1 1
— - _ 2 — b2 _ _ 2 —_ h)2
= [1 a<2<7' VT2 +4(1 b))]\/[l a>2<7'+ T2 4+ 4(1 b)})
1
_ _ 2 —_h)2
— 1 a>2<7'—|— T2 4+ 4(1 b))
1
N 2 _ B2
— a<l1 2<T+ T2 4+ 4(1 b))
hence )
of(b) = max {0, 1-= (7‘ +/7T24+4(1 - b)Q)}
2
and

Bla,b) <b <= 771 1* —a®) <b
— P —71b—a’<0

= [b>;(7—\/m>] A [b<;(7+ T2+4a2>]

1
= b<§<7+ 7'2+4a2) = 3'(a)
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hence )
(a) = mi - 2 2
B (a) mln{1,2<7+ T +4a)}.

Therefore, o and § both satisfy single-crossing.
The solution to the interval min-seed
In general, we have

7, = min { inf <BT(1 —xz)—(1-— :1:))+ , inf 5 (:1: - aT(x)>+}

12x>min{m,1—oﬁ(l)} 12x>min{m,ﬁf(0

Note that infx>min{m,1—af(1)} (BI(1—2)—(1— x))+ and infx>min{m’m(0)} (z — aT(x))+
are identical problems (as the MM graphon is symmetric). So

+
Ty = inf (w —af (x))
121>min{m,57(0)}

1 +
= 121>ri££{m77} <x — max {O, 1-— 3 (7’ + /7124 4(1 - x)z) })

, <{ (T+ 72+4(1—x)2>—(1—x) ifx>1—\/ﬁ)
= inf
1>z>min{m,}

ifre<l—v1-71
Both z and 3 (T +/7T2+4(1 - $)2> — (1 — ) are increasing in x. So

82 NI

ST+ T2+4(1—7‘)2>—(1—7) ifm>r
P =43 (7 + T2+4(1—m)2)—(1—m) ifr>m>1-—y1—7 (C.17)
m ifl—y/1—-7>m

Resilience and complete contagion
We can see that the resilience is % (7’ + /72 +4(1 — T)2> — (1 — 7). The two
following sets are both limit-optimal seeds

(1—;<r+ r2+4(1—7)2),r>

1
(1 —7',5 (T+ 72—|—4(1—7')2)> .
Partial contagion

It is not possible to have contagion of exact size m’ € (7,1). Hence 7 is a disconti-
nuity point in terms of the size of contagion.

Contagion of exact size m’ € (1 — V1=, 7') is achieved optimally with either one
of the two limit-optimal seeds

<1 _ % (r + /T AL — m’)2) ,m’>
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<1 —m, % <r + T2+ A(1— m’)2>>

Contagion of exact size m’ < 1—+/1 — 7 is possible only when there is no contagion.
This can be achieved with any seed of size m/.
Interval max-reach

o If p> % (7‘ + /72 +4(1 - 7)2) — (1 —7), by equation (C.17), f; =1.
olf%(+\/7'2+4—> (I-7)>p>1-—+1 thenfplsglvenby
p= % <T+ \/ +4(1 — f )2 > (1—f*) which is equivalent to f; = 1—%.

o If p<1—+/1—r7,then f: = p for any seed.

D Contagion in graphons with heterogeneous
thresholds

Here, we consider contagion in an Erdés-Rényi graphon in which the threshold
function is 7(u) = u. In this case, the threshold of every label is heterogeneous. More-
over, in a sampled network, this corresponds to the case in which agents’ thresholds
are drawn uniformly at random as in Kempe et al. (2003) and Lim et al. (2016). We
start by calculating the fraction of labels that will be infected in step t.

Initial seed: Let C := u(Cp) denote the measure of the set Cy. Then a fraction C
of labels is infected initially, and a fraction 1 — C' of labels remains uninfected. Let us
focus on x4, the fraction of the initially unseeded labels that become infected. At the
end of the initial step, we have that xy = 0.

Step 1: Since fCo pdv/ fol pdv = p(Cp), all unseeded labels with a threshold less
than u(Cy) = C are infected in the first step. Recall that thresholds are uniformly
distributed in [0, 1], hence the probability that a label has a threshold less than C' is
simply C. Since there is a fraction of 1 — C labels that are not in the seed set, we can
expect a fraction of x; = C'(1 — C) labels to be newly infected in Step 1. Therefore,
there is a fraction of C' 4 x1 infected labels in total at the end of Step 1.

Step 2: All unseeded labels with a threshold less than u(C1) = C'+ ;1 get infected.
Again the probability of having such a threshold is C+z1 and there are 1—C candidates
(note that here we do not distinguish whether a label was already infected in Step 1).
Hence, there is a fraction of x2 = (C' + z1)(1 — C) labels that were not in the seed set
and are infected in Step 2. Therefore, there is a fraction of C' 4 z9 infected labels in
total at the end of Step 2.

Step t: All remaining labels with a threshold less than u(Cy—1) = C + x4—1 get
infected. Hence, there is a fraction of z; = (C + z4_1)(1 — C) labels that were not in
the seed set and are infected in Step t. Therefore, there is a fraction of C 4 z; infected
labels in total at the end of Step ¢t. Figure 15 illustrates the first three steps of the
process when C' = % Note that the contagion process in the graphon does not depend
on p in this example (consistent with the fact that p simplifies in Eq. (2.3)).
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Figure 15: First three steps of contagion in the graphon with C' = %
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Figure 16: Comparison between contagion in networks with n agents sampled from a Erdds-Rényi model
(with p = 0.1 and C = 0.1) for different values of n and contagion computed according to formula (D.1) .
For each value of n we show the evolution of the fraction of infected individuals in each of the 100 repetitions
(three plots on the left) and the average evolution compared with formula (D.1) (right).

More generally, we can write
2y =(1—C)(z—1 + C),
with g = 0. We can solve this recursive equation to obtain that
zy=(1-0)1-(1-0))

of the initially unseeded labels are infected at time ¢. Therefore, the total fraction of
labels that are infected at time ¢ in the infinite population limit is

CHa=1—(1-C)" (D.1)

In our approximation, as t — oo, the fraction of infected labels goes to 1 for any
positive fraction of initial seeds and for any p € (0, 1].

Figure 16 (right) compares the contagion process averaged across 100 sampled net-
works to our analytical approximation for a continuum of labels. We can see that
the approximation works well for reasonable values of p and number n of agents and
accurately captures most of the dynamics of contagion.
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